ВНИМАНИЕ! На форуме началось голосование в конкурсе астрофотография месяца - ОКТЯБРЬ!
0 Пользователей и 2 Гостей просматривают эту тему.
Только пиримидиновые - пуриновых пока нет...
Созревание и старение клеток регулируется эпигенетически. Последовательность ДНК не меняется, но меняется экспрессия генов — например, блокируется или снижается. В своем исследовании ученые проанализировали, какие биоактивные молекулы влияют на экспрессию генов, стимулируют или ингибируют ее. По итогам анализа они создали комбинацию из четырех компонентов, стимулирующих созревание нейронов. Получившийся медиаторный коктейль назвали GENtoniK. Примечательно, что это не смесь факторов роста или иных естественных медиаторов – это комбинация низкомолекулярных соединений. Смесь подавляет эпигенетические факторы, замедляющие созревание клеток, и стимулирует факторы, способствующие этому процессу. В результате созревание происходит быстрее и/или не замедляется со временем.
Американские исследователи разработали масштабируемую и недорогую платформу с гибкими настройками для интерфейса с живыми нейронами и их сетями в клеточной культуре и обработки полученных данных. В ее основе лежат фотолитография, стандартные электрофизиологические терминалы, аппаратное обеспечение с открытой конфигурацией и программное обеспечение с открытым кодом. Отчет о работе опубликован в журнале Advanced Science.
Есть ли фракталы в природе? Есть – это снежинки, морские звёзды, кочаны капусты романеско и др. Только фракталами их можно называть с оговорками, а лучше говорить о квазифракталах: фрактальные мотивы повторяются в природных объектах не полностью и не точно. Собственно, на определённом малом масштабе фрактальность исчезает – что у снежинок, что у капусты; никакого самоподобия части и целого там уже нет. На молекулярном уровне никто никаких фракталов никогда не видел. Но теперь тут тоже нужны оговорки: только что в Nature вышла статья с описанием фрактальной структуры, которую образует цитратсинтаза цианобактерии Synechococcus elongatus.
Любопытно, что самой цианобактерии ни жарко, ни холодно оттого, что её фермент склонен строить фракталы. Бактерий модифицировали так, чтобы их цитратсинтаза не могла складываться во фракталы – такие модифицированные бактерии росли так же хорошо, как и бактерии без модификаций. Смоделировав эволюцию фрактального белка, исследователи показали, что это свойство могло возникнуть в результате очень небольшого числа мутаций, а потом могло очень легко исчезнуть с новыми мутационными изменениями. Судя по строению разных цитратсинтаз, они становились фракталообразующими у нескольких линий цианобактерий, но сохранилось это свойство только у одного вида. При всей математической сложности такой структуры, с молекулярно-биологической точки зрения она оказалась довольно простой: фрактальные свойства фермента цитратсинтазы появлялись без особой нужды, просто потому, что фермент их мог легко приобрести, ничего не потеряв. Правда, не каждый белок способен на такие эволюционные кульбиты.
Белковый фрактал
Цитата: Серый Страж от 15 Апр 2024 [08:01:55]Белковый фрактал В.Аветисов об этом как обобщающей модели молекулярных машин писал ещё десять лет тому назад: https://www.sciencedirect.com/science/article/pii/S0006349514010704?via%3DihubПочему авторы не процитировали ту работу - вопрос отдельный, но почему НиЖ не вспомнили о ней - вот это их не красит никак.
Фрактальная (складчатая) полимерная глобула, которая является необычным равновесным состоя-нием конденсированной незаузленной макромолекулы, экспериментально обнаруженным в укладке ДНКв хромосомах человека, сформирована путем иерархического коллапса полимерной цепи. Исследована релаксационная динамика эластичной сети, построенной по матрице контактов фрактальной глобулы. Обнаружено, что по своим динамическим свойствам фрактальная глобула подобна молекулярной машине.
Вы имеете в виду это?
в недавней статье в Science сотрудники Калифорнийского университета в Санта-Круз пишут, что это умеет делать одноклеточная морская водоросль Braarudosphaera bigelowii. О том, что она фиксирует азот, писали ещё лет десять назад. Но тогда считалось, что в ней живут бактерии-симбионты: бактерии получают от водоросли углеродные соединения, отдавая ей связанный азот в виде ионов аммония. Однако со временем исследователи заподозрили, что бактерии внутри водоросли – не самостоятельные клетки, а органеллы, вроде митохондрий или хлоропластов.
Генетические исследования говорят о том, что эндосимбиоз между азотфиксирующими бактериями и водорослями начался около 100 млн лет назад.
Однако в случае водоросли B. bigelowii возникает вопрос, действительно ли её бактерия-симбионт превратилась в органеллу. Если мы имеем дело с органеллой, то она подчиняется клеточному циклу, то есть когда водоросль делится, число органелл должно предварительно увеличиться, чтобы их получили водоросли следующего поколения. У B. bigelowii всё так и происходит: её азотные органеллы, названные нитропластами, делятся в точности перед клеточным делением, тогда же, когда делятся митохондрии с хлоропластами. Кроме того, настоящая клеточная органелла несамостоятельна в смысле молекулярного хозяйства, ей нужны белки, которые ей даёт клетка. И тут тоже оказалось, что у нитропластов не хватает белков для обмена веществ – эти белки кодируются ядерной ДНК водоросли, и водорослевая клетка, синтезировав их, отдаёт их нитропластам.
Некоторые бактерии живут в составе многоклеточных конгломератов, составленных из однотипных клеток (к настоящей многоклеточности это, впрочем, имеет мало отношения). Такие бактерии нуждаются в эффективных и адаптивных средствах защиты от своих главных врагов — вирусов. В недавней статье описан интересный способ, которым «многоклеточные» бактерии Thiohalocapsa sp. добиваются большой вариабельности в белках — сенсорах патогенов. Основу этой системы составляют особые ретротранспозоны, которые, внедряясь в гены-мишени, кодирующие сенсорные белки, привносят туда участки ДНК с повышенной частотой мутаций. Таким образом существенно повышается разнообразие таких белков в рамках колонии бактерий, а значит, увеличивается способность противостоять различным угрозам.
Иногда на североамериканских солончаках можно увидеть скопления небольших шариков розово-малинового цвета, напоминающих ягоды. Это колонии «многоклеточной» пурпурной серной бактерии Thiohalocapsa sp. (см. также Purple sulfur bacteria). Разумеется, «ягоды» тиогалокапсы не имеют никакого отношения к истинно многоклеточным организмам, поскольку клетки в них не делятся на функциональные типы, выполняющие специализированные задачи. Они состоят из однотипных бактериальных клеток, «склеенных» друг с другом за счет белков адгезии (см. Exopolymer). Мы для краткости будем называть тиогалокапсу «многоклеточной» бактерией.
Жизнь в составе многоклеточного конгломерата, наряду с определенными выгодами, таит немало опасностей. В частности, такие бактерии особо уязвимы перед бактериофагами — вирусами, специализирующимися на заражении бактериальных клеток. В отсутствие эффективных защитных механизмов даже одна зараженная клетка может стать причиной гибели всей колонии: новые вирионы сразу же могут поражать новые клетки.В ходе эволюции «многоклеточные» бактерии обзавелись защитой. В частности, в их геномах закодировано много белков-сенсоров антигенов, напоминающих аналогичные белки врожденной иммунной системы животных, причем наличие таких белков является прерогативой практически исключительно «многоклеточных» бактерий. Но в микромире, где идет постоянная эволюционная гонка вооружений между бактериями и вирусами, важно не только иметь защитную систему, но и уметь постоянно ее модифицировать, чтобы поспевать за своими «врагами». Другими словами, бактериям нужна вариабельность белков-сенсоров антигенов.
В недавней статье, опубликованной в журнале PNAS, описан новый механизм, при помощи которого тиогалокапса, судя по всему, добивается повышения вариабельности своих белков.
Обсуждаемая работа наглядно демонстрирует, что мы сильно недооцениваем возможности бактерий. Авторы осторожно предполагают, что «многоклеточные» бактерии могут обладать неким подобием врожденного иммунитета, но до уверенности в этом вопросе предстоит еще много исследований.
Физики из США нашли решение для субсветового варп-двигателя, двигающегося с постоянной скоростью, которое удовлетворяет всем энергетическим условиям и не требует применения экзотической энергии. Для этого они разработали и применили программу компьютерного моделирования Warp Factory. Статья об исследовании опубликована в журнале Classical and Quantum Gravity.
Физики подчеркивают, что данное решение применимо только для двигателя, двигающегося с постоянной скоростью. Проблема ускорения и замедления такого двигателя остается нерешенной. Кроме того, создание такого двигателя требует технологий, не доступных на сегодняшний день человечеству, а также громадной массы вещества для оболочки. Впрочем, ученые предполагают, что необходимую массу для их решения можно будет уменьшить на порядки, используя прямую одномерную оптимизацию радиальных профилей плотности, давления и вектора сдвига.
Язык гипотез - это не язык данных. Это язык теорий. Более того, в нейронауках выстраивается целая иерархия уровней, где каждый уровень является интерпретацией предыдущего, является для него языком высокого уровня; а сам он интерпретируется на языке ещё более высокого уровня.И на каждом из этих уровней нужна своя математика. Есть уровень генно-молекулярный. Есть уровень электродинамики нейрона. Там где физика, Ходжкин-Хаксли, и т.д.Дальше есть уровень МакКаллока-Питтса информационной связи в малых нейронных сетях, который можно описывать в терминах теории автоматов и логических сетей. Есть крупные макроструктуры мозга, аппарата для которых ещё не придумано. Ну вот Анохин уже 10 лет говорит про когнитом, но что это такое он объяснить не может. Хотя направление мысли у него правильное; я его разделяю.Ну и что? Что с этим делать?
Собственно у меня вопрос: а эта иерархия уровней уже является неким консенсусом?
Физики обнаружили положительную сторону нестабильности варп-двигателей и использовали ее для их обнаружения. Они смоделировали процесс работы двигателя и показали, что его отказ порождает гравитационные волны, поведение которых отличается от других известных источников гравитационных волн. Препринт работы опубликован на arXiv.org.
В 2021 году ученые рассмотрели больше разных вариантов искажений пространства-времени и показали, что субсветовые (при скорости, близкой к скорости света) варп-двигатели могут состоять из обычной материи. Еще более точное и приближенное к реальности решение уравнений Эйнштейна физикам удалось найти совсем недавно — они использовали для этого программу компьютерного моделирования Warp Factory, а двигатель в их модели двигается с постоянной скоростью.
Формализм для изучения динамики пространственно-временных искажений вокруг двигателя, который разработали авторы, полностью согласуется с численными решениями релятивистских уравнений. Кроме того, он позволил подробно смоделировать эволюцию потоков материи и энергии гравитационных волн и обнаружить, что при коллапсе пузыря сначала излучается волна материи с отрицательной энергией, за которой следуют чередующиеся волны отрицательной и положительной энергий. А поток гравитационных волн начинается почти сразу же после них и остается положительным на протяжении всего времени, как и ожидалось.
Не так уж часто бывает, что две конкурирующие гипотезы сосуществуют десятки лет, сменяя друг друга в борьбе за звание общепринятой. Именно такая ситуация сложилась в космологии, начиная с середины XX века. Сначала главенствовала гипотеза о том, что жизнь нашей Вселенной устроена циклически — за Большим взрывом следует стадия расширения, в ходе которой формируются звезды и галактики (а иногда где-то возникает и жизнь), сменяющаяся сжатием, вслед за которым следует коллапс — и новый цикл. К концу 1970-х годов перед этой гипотезой стоял длинный список вопросов, на которые она не могла ответить. И на смену пришла гипотеза «одноразовой» инфляции, захватившая первенство примерно на 20 лет. Но к концу XX века уже она столкнулась с многочисленными проблемами — например, открытия укоренного расширения Вселенной и гравитационных волн нанесли по ней серьезные удары. Параллельно копились работы с косвенными аргументами в пользу циклической Вселенной. В начале 2024 года вышли еще две такие статьи. Первая посвящена открытию анизотропии в распределении фонового гамма-излучения: оно имеет дипольную структуру, но ориентировано не так, как диполь реликтового излучения. Во второй статье описано открытие чрезвычайно тусклого, но достаточно массивного спутника Млечного Пути, меняющее представления о распределении черных дыр в гало галактик. Оба результата изящно вписываются в картинку мира, которую рисуют космологи в рамках гипотезы о циклической Вселенной.
В начале этого года вышли сразу две важные для космологии работы. Сенсационная статья о гамма-диполе была опубликована космологом Александром Кашлинским (Alexander Kashlinsky) с соавторами 10 января 2024 года в журнале The Astrophysical Journal Letters.
Вторая прорывная новость этого полугодия — открытие темного скопления-спутника Млечного Пути, названного Большая Медведица III/UNIONS 1 (Ursa Major III, S. Smith et al., 2024, The Discovery of the Faintest Known Milky Way Satellite Using UNIONS).
Результаты исследования, опубликованные в понедельник в журнале Nature Geoscience, противоречат общепринятым научным представлениям о том, как производится кислород, и могут даже заставить радикально переосмыслить происхождение сложной жизни на Земле.Наряду с последствиями для науки об океане, исследование вызывает новые опасения по поводу рисков глубоководной добычи полезных ископаемых.Группа ученых под руководством профессора Эндрю Свитмена из Шотландской ассоциации морских наук (Великобритания) обнаружила, что кислород вырабатывается в полной темноте на глубине около 4000 метров (13 100 футов) под поверхностью океана.