Выдержка из моего обзора по работам других авторов на 2000 год (так что число открытых объектов каждого типа и теорий о них смело умножайте на десять). Полный классификатор форм койперовых объектов с латинскими терминами.
1.Введение. Обзор достоверных теоретических n наблюдательных данных.
В 1951 году американский астроном и космолог Джерард Койпер (Jerard Kuiper) [1], на основании наблюдений ряда малоразмерных объектов (в - основном комет), пересекающих радиус орбиты Нептуна, высказал предположение о существовании в диапазоне 35-50 а.е. от Солнца пояса планетоидов, являющегося источником периодических комет. 80-90ые годы ХХ века стали эпохой открытий, в корне изменивших наши представления о характере распределения материи на значительных расстояниях от Солнца. В 1992 году, после 5 лет систематических поисков, Гавайской обсерваторией был открыт первый транснептунный объект QB1 (период 291 год, орбита круговая, перигелий 40,9 а.е., афелий 47,8 а.е, диаметр оценивается около 283 км.) На март 1999 года было открыто 113 объектов пояса Эджеверса-Койпера (Edgeworth-Kuiper Belt Objects). Крупнейший из них (помимо Плутона), имеет диаметр около 1000 км. Наименьший из наблюдаемых 96 км. Средний диаметр оценивается от 300 до 500 км. Несмотря на то, что Плутон является лишь крупнейшим в широком классе подобных объектов, Международный Астрономический Союз пришёл к решению сохранить за ним традиционный статус планеты. Тем не менее, объектов класса Плутино (Plutinos) на подобных орбитах ожидается от 35 000 (предположение Стерна, 2000 год) до 70 000 (по предположению Джевита, Левисона и Дункана, 1997, 1999 годы). Плутону, в ряду транснептунных объектов, присвоен порядковый номер. Каждый месяц наблюдений приносит информацию о десятках подобных, ранее не изученных, тел [2]. Суммарная масса объектов намного превосходит массу типичной планеты земной группы и приближается к массе планеты-гиганта (оптимистичная оценка) - от 1,3 массы Земли, по Хэмиду (1968), до 10 масс Земли, по Энееву (1980). Либо составляет внушительную часть массы планеты земной группы (пессимистичная оценка) – от 0,02 до 0,5 масс Земли по расчётам Вейсмана (1995), Джевита(1999), Морбиделли (1999), Малхотры (2000), Стерна (1995). В 1998 году Андерсон и др., на основании траекторных данных движения АМС «Пионер-10», оценили массу пояса как 0,1 от массы Земли, однако этот результат получен только по одной из возможных траекторий (аппарат мог пройти вдали от скоплений массивных объектов) [1]. Далее в работе, мы будем предполагать массу в диапазоне между данной оценкой Андерсона (0,1 массы Земли) и Хэмида (1,3 массы Земли), доверяя наиболее проверенным наблюдательным и теоретическим данным.
1.1.Класс Плутино (Plutinos).
Имеет резонансные орбиты, среднее движение которых составляет 3:2 со средним движением Нептуна. Определены параметры орбит 33 объектов такого рода. Большая полуось у всех составляет 39 а.е. Различны только эксцентриситеты (0,11-0,35), наклоны их орбит к плоскости эклиптики имеют хаотический характер (0-20). При этом перигелий близок 26 а.е, афелий – 53 а.е. Резонанс 3:2 стабилизирует орбиты этих объектов, не позволяя им сближаться с Нептуном, несмотря на тот факт, что, например, орбита Плутона пересекает орбиту Нептуна.
1.2. Классические объекты пояса Койпера (Scattered Disk Objects – SDOs).
Определены орбиты 70 объектов. Всего (на начало 2000 года) известно 255. Орбиты почти круговые. Диапазон для больших полуосей 40-48 а.е., наклон от 0 до 4. Объекты, скорее всего, шарообразны и имеют средний диаметр порядка 100-400километров.
1.3. Неклассические объекты (Unclassified Objects).
Два объекта с большой полуосью 36 а.е. и эксцентриситетом 0,1 имеют резонанс 3:4 с Нептуном. Ещё два объекта с большой полуосью 42,2 а.е. и эксцентриситетом 0,2 имеют резонанс 3:5 с Нептуном. Несколько объектов движутся в резонансе 4:5.
1.4.Уникальные объекты (Unique Objects).
Три объекта принадлежат к семейству объекта TL66 (е=0.58, большая полуось 84 а.е., период 770 лет). Исходя из звёздной величины 21m и предполагаемого альбедо 0,04, их диаметр близок к 500 км. Орбита имеет наибольший из всех объектов наклон к эклиптике – 24 градуса. Ожидаемое количество подобных объектов – около 10 000 [2]. Их суммарная масса ожидается близкой к массе планеты земной группы.
1.4 Плутон (Pluto).
Заслуживает отдельного от своего класса рассмотрения, как крупнейший объект пояса Койпера (е=0,246, большая полуось 40 а.е., период 248 лет, наклон 17,1, радиус планеты 1195 км., плотность 1,7 г/см.). В зарубежной литературе относится к классу Lesser planets, в отличие от Minor planets (астероидов). Альбедо его составляет 0,3, что характерно для кристаллического азота с фракциями метана в твёрдом агрегатном состоянии. [2], По покрытию звёзд фона установлено наличие атмосферы, сгущающейся в перигелии, в связи с увеличением солнечной радиации. В 1978 году на расстоянии 19405 км от Плутона открыт спутник планеты Харон, соизмеримый с Плутоном по радиусу (593 км.). Орбитальный период вращения Харона и период вращения обеих планет вокруг оси, видимо, синхронизован и совпадает. Астрономия претендует на теоретическое открытие Плутона “на кончике пера”, по аналогии с классическим открытием Нептуна по систематическому возмущению движения Урана. Однако, погрешности движения Нептуна имели довольно бессистемный характер, неудовлетворительно коррелирующий с наличием новой крупной планеты на внешней орбите. Обнаружение его произошло случайно, спустя много лет поисков и далеко не в центре предсказанного квадрата наблюдений. Открытие принадлежит Клайду Томбо, наблюдателю Ловелловской обсерватории в 1930 году. Изучение параметров Плутона мало прояснило их взаимосвязь с возмущениями орбиты Нептуна. Исследователям, во многом, повезло. Объяснением возмущений орбит Плутона и Нептуна могло быть наличие ещё какого-либо, третьего тела. Вслед за Плутоном начался поиск Трансплутона, не приведший, однако, к результату за последние 70 лет. В настоящее время большинство исследователей свыклось с мыслью о его отсутствии. Автор этих строк полностью разделяет это мнение. Открытие транснептунных объектов, лишь на короткое время возродило былые надежды. Масса большого количества малоизученных объектов, случайным образом распределённая по поясу Койпера, делает невозможными какие-либо систематические расчёты даже при помощи новейших средств вычислительной техники. Для определения структуры гиперкойперова пространства нужны принципиально иные подходы.
1.5.Гипотетические объекты.
1.5.1.Плоское облако Хиллса.
В 1981 году Хиллс [1] предположил существование плоского кометного облака, лежащего в плоскости эклиптики на расстоянии 1000-10000 а.е. от Солнца. Согласно Бейли (1990) оно пересекается с облаком Оорта (см. ниже). Цицин (1993) считал, что «ансамбль реликтовых планетезималей начинается с астероидного пояса и простирается до внешней части облака Хиллса».
1.5.2.Облако Оорта (Oort cloud).
В 1950 году Ян Хендрик Оорт (Jan Hendrik Oort) (1900-1992) [1,2] предположил существование массивного облака объектов, имеющего форму, близкую к сферической, возможного источника долгопериодических и гиперболических комет (в последний раз предположение исследовано Талкотом в 1999 году) в области от 10000 до 150 000 а.е. от Солнца. Таким образом он счёл, что фактические размеры Солнечной системы трудноопределимы и плавно переходят в аналогичные системы других звёзд местной группы. В данное время большинство астрономов считает пространство за орбитой Нептуна заполненным телами, аналогичными крупным кометам, которые считаются основой пояса Койпера. Предпочитаемое большинством авторов название для этого объекта - диффузное кометное облако. По данным Уигерта, Трэмэйна, Вейсмана и Левисона (1997), облако содержит 1 10^13 комет, пришедших из зоны, лежащей в радиусе орбиты Юпитера. Недавно открыт необычный объект 1996PW (большая полуось 322 а.е., малая полуось 2,54 а.е., е=0,9921, наклон 29,9, диаметр около 10 км.), существование которого косвенно свидетельствует в пользу гипотезы данных авторов.
Библиография.
1.Ипатов С.И. Миграция небесных тел в Солнечной системе. М. Эдиториал УРСС, 2000.
2.Уральская В.С. Объекты внешней области солнечной системы. АК ВАГО Выпуск 102 . М. Космоинформ, 2000, стр.186-193.
3. Patrick Moore. Astronomy. 1999.
4.Псковский Ю.П. Новые и сверхновые звёзды. М.Наука, 1985. Стр.7.
5.Сурдин В.Г. Рождение звёзд. М. Эдиториал УРСС, 1999.
Рис. автора.

Строение солнечной системы на основе современных данных.