ВНИМАНИЕ! На форуме начался конкурс - астрофотография месяца - АВГУСТ!
0 Пользователей и 1 Гость просматривают эту тему.
Я, конечно, целиком и полностью за "обычный" космический лифт. Уверен, это будет первой следующей ступенькой развития космонавтики после современных ракет. Потому что даже если современные материалы прочны недостаточно, всё равно рано или поздно найдут материалы достаточной прочности. Никаких физических органичений на прочность материалов нет.
Прочность материала определяется энергиями химических связей.
Крмсталлы не катят, по отношению прочности к массе, а следовательно весу, углеродные цепочки вне конкуренции.
Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65-120 гигапаскалей.Для сравнения, прочность большинства видов стали — около 1 ГПа, и даже у прочнейших её видов — не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6—4,1 ГПа, а у кварцевого волокна — до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немногим выше.Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем её компоненты. Исследования по улучшению чистоты материала трубок и по созданию разных их видов продолжаются.
Существует мнение, и мне кажется, что оно справедливо, что вся история человечества - это история борьбы за прочность. Действительно, самое грубое деление на эпохи, как известно, представляется таким: каменный - бронзовый - железный века. Железный век продолжается до сих пор. Шаг за шагом человек переходил от менее прочного материала к более прочному, это вело к совершенствованию всей используемой техники и расширению ее возможностей. Сейчас в борьбе за прочность счет идет уже только на проценты; из технических материалов выжато практически все, что можно, и каждый последующий шаг дается со все большим трудом.Какова же прочность материала, чем она определяется? Известный физик Я.И. Френкель [14] сделал простой расчет этой величины, то есть напряжения разрушения кристаллического твердого тела. Повторим этот расчет для кристалла NaCl, который, как говорилось выше, часто используется как модельный материал. Вычислим силу, которую необходимо приложить, чтобы разорвать кристалл с единичным (1 м2) сечением. Кристалл хлористого натрия состоит из ионов двух сортов, Na и Cl, которые взаимодействуют между собой по закону Кулона. Поскольку кристалл кубический, то а1 = а2 = а3 = а. Следовательно,.Здесь e 2 /(4pe0a 2) - сила взаимодействия между парой ионов разного знака, 1/ а 2 - число таких пар на единицу площади. Значения величин в формуле (2) следующие: заряд иона е = 1,6 " 10-19 Кл, межатомное расстояние а ї 2,81" 10-10 м, электрическая постоянная e0 = 8,86 " 10-12 Кл2 " H-1 " м-2.Проделав необходимые вычисления, получаем sF = 1,44 " 1011 Па и, для того чтобы лучше прочувствовать полученную величину, используем другую размерность:1,44 " 1011 Па = 1,44 " 104 кг/мм2.Безусловно, полученное значение напряжения разрушения кристалла sF (прочность) кажется удивительным. Ведь это почти 15 тонн на 1 квадратный миллиметр! Всякий, кто когда-нибудь имел дело с поваренной солью, для которой сделан расчет, не поверит в результат. Да и металлы и сплавы не имеют такой прочности. В чем же дело? Ошибку сделать негде, модель решетки NaCl правильна, а цифра в тысячи раз больше, чем в действительности.Из неверного на первый взгляд результата следуют два важных вывода. Во-первых, разрушение идет, конечно, не так, как мы молчаливо предполагали, производя расчет. Не все связи разрываются одновременно, они рвутся по очереди, так что справиться с ними значительно проще и усилия нужны более скромные. В этом можно убедиться, наблюдая за процессом развития разрушения. На рис. 8 показана трещина, остановившаяся внутри кристалла окиси магния MgO, очень похожего на NaCl. Видны линии равной толщины - результат интерференции на тонком клине, в который превратилась тонкая трещина. Теперь достаточно приложить небольшую силу, и трещина продолжит свой путь до тех пор, пока не развалит кристалл на две половины и не завершит начатый когда-то, но прерванный на полпути процесс разрушения. Между прочим, это очень интересная и важная проблема - рост трещин. Оказывается, что они способны расти со скоростью до 2 км/с, проходя, например, в стальных трубопроводах сотни метров, что, конечно, влечет непоправимо тяжелые последствия [15].Второе следствие из нашего расчета связано с тем, что полученная цифра должна, конечно, иметь какой-то смысл, должна чему-то соответствовать. Действительно, величина, которую мы рассчитали, называется теоретической прочностью и характеризует абсолютно идеальный кристалл, не содержащий каких-либо дефектов, с которых начинается разрушение. Если бы удалось такой кристалл получить, то он бы имел именно теоретическую прочность. И такие кристаллы существуют. Правда, их удается вырастить только очень маленькими, с площадью поперечного сечения около 10 i 10 мкм и длиной ~ 10 мм. Называются они нитевидными, а чаще просто усами в соответствии с их формой. Открыты они были случайно, но когда обнаружилась их необычайно высокая прочность, их стали искусственно выращивать. Сейчас получены усы металлов и неметаллов, и у всех них обнаруживается чрезвычайно высокая прочность.Лет двадцать назад казалось, что если научиться выращивать бездефектные кристаллы большого размера, то проблема прочности будет полностью решена, а расход металла в сотни раз сократится. К сожалению, эти надежды не сбылись. Вырастить идеальный кристалл большого размера или очень дорого, или невозможно. Только в таких областях, как радиоэлектроника, это можно себе позволить. Например, полупроводниковые кристаллы Ge и Si выращиваются практически бездефектными. Такими же являются и рубиновые кристаллы для лазеров (рис. 5). Что же касается конструкционных материалов, то здесь пока приходится достигать высоких значений прочности, идя традиционным путем.И еще одно важное заключение. Оказывается, что многие физические свойства кристаллов, в первую очередь их прочность, определяются не идеальной кристаллической решеткой, а отклонениями от идеальности - дефектной структурой
Прочность материала определяется энергиями химических связей. Но для космического троса потребна ещё и лёгкость. одновременно этими качествами обладают углерод-углеродные связи.
Но ведь даже если каким-то чудом сделать из этого материала идеальнейший трос 36 000 км., то долго ли он прослужит в условиях космических излучений и микрометеоритной бомбардировки? Да и полимерные материалы довольно быстро стареют.
это не просто совершенствование уже имеющихся технологий, это посерьёзнее.