ВНИМАНИЕ! На форуме начался конкурс - астрофотография месяца - ИЮЛЬ!
0 Пользователей и 1 Гость просматривают эту тему.
\[ \Phi = \cos^2 \frac{\lambda}{2} \]\[ \frac{\lambda}{2\pi} = \frac{t}{29.53} \]Ф - фаза, t - возраст. Лямбда - элонгация. В первом приближении.
Спасибо большое, но только во всех скобочках и \ формулу так и не понял.
Цитата: Макc от 29 Сен 2012 [17:20:05]Спасибо большое, но только во всех скобочках и \ формулу так и не понял.Как-то вот так:
Рендеринг формул выключен, потому и всё в скобочках и \
Цитата: Deimos от 29 Сен 2012 [16:42:36]\[ \Phi = \cos^2 \frac{\lambda}{2} \]\[ \frac{\lambda}{2\pi} = \frac{t}{29.53} \]Ф - фаза, t - возраст. Лямбда - элонгация. В первом приближении. Лямда в первой формуле не элонгация, а фазовый угол... Он равен нулю в полнолуние.Возраст же Луны отсчитывается обычно от новолуния. Элонгация будет L = (360° * t)/29.53 = 12.19° * tИ формула для фазы в зависимости от элонгации будет Ф = (sin(L/2))^2Для полнолуния (t=15 дней) L=180°; Ф=1,0Для четверти (t=7 дней) L=90° Ф=0.50 (t=22 дня) L=270 Ф=0.50и т.д.