Телескопы покупают здесь


A A A A Автор Тема: Коллекция моделей кристаллического эфира  (Прочитано 11625 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн saulius

  • *****
  • Забанен!
  • Сообщений: 532
  • Благодарностей: 4
  • Заправлены в планшеты Космические карты
    • Сообщения от saulius
по поводу исключительной продольности грав. волн погорячился. Если соседние слои деформируются не впротивоположную , а в одинаковую сторону , левая картинка подходит и для поперечных гравитационных волн.
Кстати, по существу , сила притяжения на самом деле есть сила давления со стороны среды (эфира).

nanoworld

  • Гость
Кушелев: -У меня появилась идея. Давайте досканально разберёмся с принципами движения змеи, а там, глядишь и с эфиром начнёт проясняться... ;)

nanoworld

  • Гость
Баллистические фононы проливают свет на модель кристаллоподобного эфира...

http://phys.web.ru/db/msg/1168392/

Rangelov

  • Гость
   Я хотел бы добавить еще одну модель физического вакуума.  A physical model (PhsMdl) of the existent fluctuating vacuum (FlcVcm) and its elementary excitation photon as a solitary needle cylindrical harmonic oscillation is offered. It is common known that the physical model (PhsMdl) presents at us as an actual ingradient of every good physical theory (PhsThr). It would be used as for an obvious visual teaching the unknown occurred physical processes within the investigated phenomena. We assume that the FlcVcm is consistent by neutral dynamides, streamlined in some close-packed crystalline lattice. Every dynamide is a massless neutral pair, consistent by two massless opposite point-like (PntLk) elementary electric charges (ElmElcChrgs): electrino (-) and positrino (+). In a frozen equilibrium position both opposite PntLk ElmElcChrgs within every dynamide are very closely installed one to another and therefore the aggregate polarization of every one dynamide has zero value and its electric field (ElcFld) also has zero electric intensity (ElcInt). However the absence of a mass in a rest of the electrino and positrino makes them possible to have a big mobility and infinitesimal dynamical inertness of its own QntElcMgnFld, what permits them to be found a bigger time in an unequilibrium distorted position. The aggregate ElcFld of the dynamide reminds us that it could be considered as the QntElcFld of an electric quasi-dipole moment (ElcQusDplMmn) because both opportunity massless electrino and positrino have the same inertness. For a certain that is why the FlcVcm dos not radiate real photon (RlPhtn) by itself, as dynamide electric dipole moment (ElcDplMmn) has a zero value. The aggregate ElcFld of every dynamide polarizes nearest neighbour dynamides in an account of which nearest dynamides interact between itself, and in a result of which its elementary collective excitations have a wave character and behavior. It is richly clear that the motions in the opposite direction of both opposite PntLk ElmElcChrgs of an every dynamide creates an aggregate magnetic field (MgnFld) of every one and the sum of which makes a magnetic part of the free QntElcMgnFld.
   

Rangelov

  • Гость
  Здесь я представлю некоторые формулы,показывающие применимость модели к КЭД.
  Although up to the present nobody of scientists distinctly knows are there some elementary micro particles (ElmMicrPrts) as a fundamental building MicrPrts (QntMicrPrts) by means of our convincing and transparent surveyed PhsMdl. We suppose that the photon is some elementary excitation of the FlcVcm in the form of a solitary needle cylindrical harmonic oscillation. The deviations of both PntLk massless opportunity ElmElcChrgs of an every dynamide from their equilibrium position in the vacuum close-packed crystalline lattice creates its own polarization, the sum of which creates total polarization of the FlcVcm as a ideal dielectric, which causes the existence of a total resultant QntElcFld. Consequently the total polarization of all dynamides creates own resultant QntElcFld, which is an electric part of the free QntElcMgnFld. Really, if the deviation of an every PntLk ElmElcChrg within every one dynamide from its own equilibrium position is described by dint of formula of collective oscillations (RlPhtns) of connected oscillators in a representation of second quantization:

   u_{j}(r)=(1/(√N))∑_{q}√((ℏ/(2Θω)))I_{jq}{a_{jq}⁺expi(ωt-qr)+a_{jq}exp-i(ωt-qr)} <label>a</label>

    where Θ is an inertial mass of the electrino and positrino and I_{jq} are vector components of the deviation (polarization). If we multiply the deviation u of every PntLk ElmElcChrg in every dynamide by the twofold ElmElcChrg value e and dynamide density W=(1/(Ω_{o})), then we could obtain in a result the total polarization value of the FlcVcm within a representation of the second quantization :

   P_{j}(r)=((2e)/(Ω_{o}√N))∑_{q}√((ℏ/(2Θω)))I_{jq}{a_{jq}⁺expi(ωt-qr)+a_{jq}exp-i(ωt-qr)}

    Further we must note that the change of the spring with an elasticity χ between the MicrPrt and its equilibrium position, oscillating with a circular frequency ω by two springs with an elasticity χ between two MicrPrts, having opportunity ElmElcChrgs and oscillating with a circular frequency ω within one dynamide, is accompanied by a relation 2χ≃χ. Indeed, if the ,,masses" of the oscillating as unharmed dynamide is twice the ,,mass" of the electrino or positrino, but the elasticity of the spring between every two neighbor dynamides in crystaline lattice is fourfold more the elasticity of the spring between two the MicrPrts, having opportunity ElmElcChrgs and oscillating one relatively other within one dynamide, while the common ,,mass" of two the MicrPrts, having opportunity ElmElcChrgs and oscillating one relatively other within one dynamide is half of the ,,mass" of the electrino or positrino. Therefore the circular frequency ω of the collective oscillations have well known relation with the Qoulomb potential of the electric interaction (ElcInt) between two opportunity massless PntLk ElmElcChrgs electrino and positrino and their dynamical inertial ,,masses" which can be described by dint of the equations :

   ω&#178;=2(χ/Θ)  and  ω&#178;= ((4χ)/(2Θ))  consequently  ω&#178;= 2 ω&#178;


     and  therefore  Θω&#178;=((4e&#178;)/(4πΩ_{o}ɛ_{o}))  or  ΘC&#178;= ((e&#178;)/(4πΩ_{o}q&#178;ɛ_{o}))

    where

   NΩ_{o}=Ω  and  d = WeE   or  E = (d/(Ω_{o}ɛ_{o}))= (P/(ɛ_{o}))

    we could obtain an expression for the ElcInt of the QntElcMgnFld, well known from classical electrodynamics (ClsElcDnm) in a representation of the second quantization:

   E_{j}(r)=∑_{q}√(((2πℏω)/(Ωɛ_{o})))I_{jq}{a_{jq}⁺expi(ωt-qr)+a_{jq}exp-i(ωt-qr)}

    By dint of a common known defining equality :

   E_{j}= -((∂A_{j})/(∂t))

    From (<ref>f</ref>) we could obtain the expression for the vector-potential A of the QntElcMgnFld in the vacuum in a representation of the second quantization :

   A_{j}(r)=i∑_{q}√(((2πℏ)/(Ωωɛ_{o})))I_{jq}{a_{jq}⁺expi(ωt-qr)-a_{jq}exp-i(ωt-qr)}

    or

   A_{j}(r)=i∑_{q}√(((2πℏωμ_{o})/(Ωq&#178;)))I_{jq}{a_{jq}⁺expi(ωt-qr)-a_{jq}exp-i(ωt-qr)}

    Further by dint of the defining equality μ_{o}H=rotA from (<ref>g1</ref>) and (<ref>g2</ref>) we could obtain an expression for the MgnInt of QntElcMgnFld, well known from ClsElcDnm in a representation of the second quantization:

   H_{j}(r)=∑_{q}√(((2πℏω)/(Ωμ_{o})))[n_{q}&#215;I_{lq}]_{j}{a_{jq}⁺expi(ωt-qr)+a_{jq}exp-i(ωt-qr)}

    where n_{k} is unit vector, determining the motion direction of the free QntElcMgnFld. By means of presentation (<ref>h</ref>) of MgnInt H_{j}(r) and taking into consideration that n_{q} is always perpendicular to the vector of the polarization I_{jq} we obtain that :

   [v&#215;[n_{q}&#215;I_{jq}]]= n_{q}(v⋅I_{jq}) - I_{jq}(v⋅n_{q})

    From this equation (<ref>ha</ref>) we could understand that if the velocity v of the interacting ElcChrg is parallel of the direction n_{q} of the motion of the free QntElcMgnFld, then the first term in the equation (<ref>ha</ref>) will been nullified and the second term in the equation (<ref>ha</ref>) will determine the force, which will act upon this interacting ElcChrg. But when the velocity v of the interacting ElcChrg is parallel of the direction I_{jq} of the motion in the opposite directions of two PntLk ElmElcChrg of the electrino and positrino and one is a perpendicular to the direction n_{q} of the motion of a free QntElcMgnFld, then the second term in the equation (<ref>ha</ref>) will be nullified and the first term in the equation (<ref>ha</ref>) will describe the force, which acts upon this interacting PntLk ElmElcChrg. It turns out that the interaction between currents of the electrino and positrino, which is parallel to the vector of a polarization I_{jq} as (v_{j}=(ω/π)I_{jq}), with the QntMgnFld of the free QntElcMgnFld determines the motion and its velocity of same this free QntElcMgnFld. Indeed, it is well known that the change of a magnetic flow Φ creates a ElcFld. Therefore by dint of a relation (<ref>ha</ref>) we can obtain the following relation :

   F_{j}= (e/C)[v&#215;H]=(e/(mCω))[E&#215;H]= ∑_{q}((e&#178;)/(mC))√(((2πℏ)/(Ωɛ_{o})))√(((2πℏ)/(Ωμ_{o})))ε_{jkl}n_{j}(I_{kq}⋅I_{lq})
   {a_{kq}⁺expi(ωt - qr)+ a_{kq}exp-i(ωt - qr)}{a_{kq}⁺expi(ωt - qr)- a_{kq}exp-i(ωt - qr)}

    Therefore by dint of (<ref>hb</ref>) and defining equations (<ref>e</ref>) and (<ref>g2</ref>) we can obtain:

   (1/(√(ɛɛ_{o})))= v √(μμ_{o})  or  at  (1/(√(ɛ_{o})))= C √(μ_{o})  we   have  C = v . √(ɛμ).

     Поляризационные токи, созданные движением двух противоположных точечных электрических зарядов,создающие поляризацию диполей, создают собственные магнитные поля. Магнитное взаимодействие между током и магнитном поле вэнуждают свободное электромагнитное поле двигаться в вакууме в направлении, перпендикулярно собственных электрического и магнитного полях, со скоростью С, зависящой только от механических своиств.

Оффлайн saulius

  • *****
  • Забанен!
  • Сообщений: 532
  • Благодарностей: 4
  • Заправлены в планшеты Космические карты
    • Сообщения от saulius
Цитата
Следовательно вакуум имеет кристальную решетку, составленную из динамидов.Дунамиды суть электрические диполи, составленные из электромагнитно связанных безмассовых точечных противоположных электрических зарядов - электрино (-) и позитрино (+) .Благодаря электромагнитного взаимодействия между соседными диполями, вакуумная решетка проявляет волновые свойства. Это означает, что колебания и деформации вакуумацбудут коллективными колебаниями, а не отдельные возбуждения отдельного динамида.Именно поэтому в вакууме будут создаваться механические (фононные) и поляризационные (электромагнитные)  колебания.
  У Вас элементы решетки безмассовые . Непонятно ,как тогда может в среде распространяться колебания . Для этого Ваши динамиды должны обладать инерцией.

Rangelov

  • Гость
Цитата
Следовательно вакуум имеет кристальную решетку, составленную из динамидов.Дунамиды суть электрические диполи, составленные из электромагнитно связанных безмассовых точечных противоположных электрических зарядов - электрино (-) и позитрино (+) .Благодаря электромагнитного взаимодействия между соседными диполями, вакуумная решетка проявляет волновые свойства. Это означает, что колебания и деформации вакуумацбудут коллективными колебаниями, а не отдельные возбуждения отдельного динамида.Именно поэтому в вакууме будут создаваться механические (фононные) и поляризационные (электромагнитные)  колебания.
  У Вас элементы решетки безмассовые . Непонятно ,как тогда может в среде распространяться колебания . Для этого Ваши динамиды должны обладать инерцией.
  Вы наверника знаете, что роль инерции при движении выполняет магнитное поле. Поэтому движение точечных электрических зарядов создает магнитное пол, которое выполняет роль динамической инертности.
   Почему точечные заряды в динамидах не имеют масс? Дело в тем, что когда я изследдовал поведение электрона, то  я установил, что в малом динамиде нет место чтобы каждый электрический заряд мог создавать свое поле и взаимодействувать с ним чтобы породить собственную енергию и массу покоя.Поэтому я принял, что в динамидах электрические заряды связаны, образуют динамид.А когда мы разделим оба заряда и каждый начинает двигаться в отдельности, тогда уже образуются массы покоя. Пока в динамидах точечные электрические заряды имеют только динамическую инертность благодаря создание ими  магнитные поля

nanoworld

  • Гость
По техническим причинам я закрываю все свои темы, кроме "Самосборка классической науки": https://astronomy.ru/forum/index.php/topic,6624.0.html