ВНИМАНИЕ! На форуме начался конкурс астрофотография месяца - ОКТЯБРЬ!
0 Пользователей и 11 Гостей просматривают эту тему.
Также подтвердил атмосферные (компромисс) двигатели на ней на первой итерации.
Маск дал оценку в 60+ % что в 2020 2 ступень будет на орбите. Также подтвердил атмосферные (компромисс) двигатели на ней на первой итерации.
Все двигатели будут атмосферные?
Кстати да. Обскакать слс будет феерично. Но практика показывает затягивание сроков. Если хеви и дракон отлетают штатно весной то все может быть
От коррозии предусмотрена защита?
Кофейники тоже с орбиты спускали
Кстати, пару дней назад находил исследования металлических TPS, где применялись решения с систем охлаждения ядерных реакторов.
Demidrol уже выше давал эти фото нержавеющего танка второй ступени Delta-2.
Чистая нержавейка...
Stainless steel is correct, but different mixture of alloys & new architecture.
Actually, the only significant design element in common with early Atlas is stainless steel & we’re using a different alloy mix.
For sheet/plate, at supplier made to our spec.
Свои суперсплавы они будут юзать точечно. Он точно говорил что основной объем будет поставлятся со стороны.
These grades of stainless have chromium (approx. 18 to 30%) and nickel (approx. 6 to 20%) as their major alloying additions. Type 304 is the most widely used alloy of all stainless steels. 300 Series Stainless steel alloys resist corrosion, maintain their strength at high temperatures and are easy to maintain.
Кстати про 300 серию нержавейки:
Т.е. для коррозионной стойкости добавляют хром.
В работе,ссылку на которую я давал выше
The melting point for the tank (410 stainless steel) is approximately 1500°C. The forward dome of the tank had a large hole with a jagged periphery of re-solidified molten metal (Figure 9.4.4), which had a black, burned appearance. Splashes of molten metal were seen at many locations on the exterior surface. These splashes were particularly heavy around the molten hole. Other observations included erosion/melting of stainless steel brackets, usually in regions where molten metal splashes were present. The tank had numerous small holes (2−3 mm) on the tank skin from micrometeoroid impacts. Most of the small holes were located on the aft end of the tank.Although thorough analyses were performed on all observed features on the tank, only analyses relevant to re-entry survivability modeling, including the cause of the apparent molten hole on the forward end of the tank and analyses for estimating overall peak re-entry temperatures, are summarized here.EDXS analyses indicated that the molten metal splashes were aluminum. The tank had aluminum hardware attached to stainless steel brackets. It is theorized that the aluminum hardware melted from re-entry heating and alloyed with the brackets causing the observed melting/erosion of some of the brackets. Some of the brackets, which have a melting point of around 1400°C, showed no evidence of melting. Therefore, it was concluded that the overall re-entry temperature was >640°C (Al alloy melting point) and <1400°C. Microstructural analyses were used to estimate overall re-entry temperatures. Microstructural changes due to diffusion of aluminum splashes into the stainless steel tank in regions in which burning of aluminum did not occur were used for the temperature analysis, and this showed that the peak overall re-entry temperature on the tank was between 1200 and 1280°C.