A A A A Автор Тема: яркость полной Луны по сравнению с яркостью Солнца  (Прочитано 670 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн FiremanАвтор темы

  • Новичок
  • *
  • Сообщений: 7
  • Благодарностей: 0
  • Мне нравится этот форум!
    • Сообщения от Fireman
Приветствую

Подскажите, а как подсчитать, насколько яркость Луны меньше яркости Солнца.

Если исходить из того, что:
1) Луна - шар
2) угловой размер Луны равен угловому размеру Солнца (q ~ 0.5 градуса)
3) альбедо Луны 0,12
4) при полнолунии солнечный свет падает перпендикулярно лунной поверхности

если бы Луна просто была плоским зеркалом, то она была бы в 1/0,12 = 8,3 раза тускнее Солнца
но Луна - по сути сферическое зеркало и часть отражённого света попадает не попадает на Землю

Верно?

с кучей допущений получается что-то типа Луна светит как (0.5 / 360)^2 * 0.12 от Солнца, т.е. в 4.320.000 раз слабее, что как-то не очень похоже на реальные 400.000 раз

Оффлайн Pluto

  • Администратор форума
  • *****
  • Сообщений: 28 030
  • Благодарностей: 1165
    • Сообщения от Pluto
Луна не сферическое зеркало. Она отражает диффузно.

Оффлайн FiremanАвтор темы

  • Новичок
  • *
  • Сообщений: 7
  • Благодарностей: 0
  • Мне нравится этот форум!
    • Сообщения от Fireman
Луна не сферичсеское зеркало. Она отражает диффузно.
это я понимаю, это и даёт расхождение на порядок со сферическим зеркалом?
хотя альбедо разве это и не решает? т.е. как раз корректирует вычисления для зеркала

Оффлайн Dmitry K

  • *****
  • Сообщений: 737
  • Благодарностей: 38
  • So Far So Good... So What
    • Сообщения от Dmitry K

с кучей допущений получается что-то типа Луна светит как (0.5 / 360)^2 *

Телесные углы не так соотносятся.

Оффлайн FiremanАвтор темы

  • Новичок
  • *
  • Сообщений: 7
  • Благодарностей: 0
  • Мне нравится этот форум!
    • Сообщения от Fireman
кажется разобрался
решил зайти с другого боку - посмотреть сколько энергии падает с Солнце на Землю и с Солнца на Луну и затем на Землю

пусть \( E \) - яркость/мощность/кол-во фотонов в единицу времени и т.п., не суть

тогда на освещённую половину Земли упадёт

\( E_{земля} = E \times \frac{1}{2} 4 \pi R_{земля}^{2} / (4 \pi a_{земля}^{2}) = E \times R_{земля}^{2} / (2 a_{земля}^{2})  \)

на освещённую половину Луны упадёт

\( E_{луна} = E \times R_{луна}^{2} / (2 a_{земля}^{2})  \)

а на Землю с Луны при условии того, что свет отразится лишь на половину неба

\( e_{земля} = E_{луна} \times \frac{1}{2} 4 \pi R_{земля}^{2} / (4 \pi a_{луна}^{2}) = E \times R_{луна}^{2} / (2 a_{земля}^{2})  \times \frac{1}{2} 4 \pi R_{земля}^{2} / (\frac{1}{2} 4 \pi a_{луна}^{2}) = E \times R_{земля}^{2} R_{луна}^{2} / (2 a_{земля}^{2} a_{луна}^{2})  \)

таким образом не Землю с Луны упадет меньше чем с Солнца в

\( E_{земля} / e_{земля} = (E \times R_{земля}^{2} / (2 a_{земля}^{2})) / (E \times R_{земля}^{2} R_{луна}^{2} / (2 a_{земля}^{2} a_{луна}^{2}) = a_{луна}^{2} / R_{луна}^{2}  \)

а с учётом альбедо \( \alpha \) получаем:

\( a_{луна}^{2} / R_{луна}^{2} / \alpha = 384400^{2} / 1737^{2} / 0,12 = 408118 \)

что уже похоже на правду в \( −26,7^{m} \) vs \( −12,7^{m} \), т.е. 398107 раз

Уф, вроде так
« Последнее редактирование: 14 Дек 2025 [02:17:22] от Fireman »

Оффлайн Dmitry K

  • *****
  • Сообщений: 737
  • Благодарностей: 38
  • So Far So Good... So What
    • Сообщения от Dmitry K
Мое решение

R радиус Земли, r радиус  Луны, l расстояние от Земли до Луны
Оценим во сколько раз отличаются освещенности Земли Солнцем и Луной

I освещенность Земли Солнцем
Освещенность Луны Солнцем тогда I r^2/R^2 ( расстояния до Солнца считаем одинаковым у Луны и Земли)

Если считать, что Луна равномерно отражает солнечный свет во всех направлениях, то Земля получает pi R^2/ 2 pi l^2 от получаемого Луной от Солнца или r^2/2 l^2 ( берем половину площади сферы, потому что Луна освещает только половиной поверхности)

Как видите , радиус Земли сокращается, что логично ожидать

Считаем, с учетом альбедо 0,1 разница примерно 800 000 раз, что похоже на правду, учитывая кучу допущений и упрощений. Что меньше реального, можно объяснить причинами, что Луна не "работает" как зеркало, а рассеивает диффузно и эффектом оппозиции (Зелигера) , в результате которого альбедо увеличивается.

Ошибка топикстартера в начале в неправильном обращении с телесными углами, в этом решении обошлись без них, но если очень хочется, то надо знать , площадь сферы составляет 4pi стерадиан (приблизительно 41252,96 квадратных градуса), а Земля на небе Луны диаметром 2 градуса. Вместо соотношения площадей берем соотношение телесных углов и получаем тот же результат.
« Последнее редактирование: 14 Дек 2025 [13:40:48] от Dmitry K »

Оффлайн Dmitry K

  • *****
  • Сообщений: 737
  • Благодарностей: 38
  • So Far So Good... So What
    • Сообщения от Dmitry K
тогда на освещённую половину Земли упадёт

Вы берете площадь поверхности освещенного полушария ( 4 pi R^2/2), но правильнее брать площадь большого круга, перпендикулярного лучам Солнца (pi R^2) т к на единицу площади в разных широтах приходится разное количество солнечной энергии
« Последнее редактирование: 14 Дек 2025 [12:38:22] от Dmitry K »

Оффлайн Сергей Казаков

  • *****
  • Сообщений: 13 834
  • Благодарностей: 412
  • Мне нравится этот форум!
    • Сообщения от Сергей Казаков
    К 1 .
    1/400 000 .

Оффлайн Сергей Казаков

  • *****
  • Сообщений: 13 834
  • Благодарностей: 412
  • Мне нравится этот форум!
    • Сообщения от Сергей Казаков
    Альбедо измеряется , а не вычисляется .