ВНИМАНИЕ! На форуме началось голосование в конкурсе - астрофотография месяца - ИЮНЬ!
0 Пользователей и 2 Гостей просматривают эту тему.
http://adsabs.harvard.edu/abs/2017GCN..20442...1VVolnova, A.; Mazaeva, E.; Inasaridze, R.; Moskvitin, A.; Klunko, E.; Rumyantsev, V.; Korobtsev, I.; Ayvazian, V.; Kvaratskhelia, O.; Inasaridze, G.; Molotov, I.; Pozanenko, A.GRB 161219B: afterglow and SN2016jca optical observations.GRB Coordinates Network, Circular Service, No. 20442, #1 (2017)00/2017http://adsabs.harvard.edu/abs/2017GCN..20472...1MMazaeva, E.; Pozanenko, A.; Inasaridze, R.; Volnova, A.; Ayvazian, V.; Kvaratskhelia, O.; Inasaridze, G.; Molotov, I.GRB 170112A : AbAO optical observations.GRB Coordinates Network, Circular Service, No. 20472, #1 (2017)00/2017http://adsabs.harvard.edu/abs/2017GCN..20479...1MMazaeva, E.; Pozanenko, A.; Inasaridze, R.; Volnova, A.; Ayvazian, V.; Kvaratskhelia, O.; Inasaridze, G.; Molotov, I.GRB 170115A : AbAO optical upper limit.GRB Coordinates Network, Circular Service, No. 20479, #1 (2017)00/2017http://adsabs.harvard.edu/abs/2017GCN..20516...1MMazaeva, E.; Pozanenko, A.; Inasaridze, R.; Volnova, A.; Ayvazian, V.; Kvaratskhelia, O.; Inasaridze, G.; Molotov, I.GRB 170121B: AbAO optical observations.GRB Coordinates Network, Circular Service, No. 20516, #1 (2017)00/2017
Сегодня на ISON-SSO поставлен рекорд по покрытию - 490 кв. градусов (впервые отснято более 100 площадок). Думаю что к лету будет около 600 кв. градусов при полной ночи. Покрытие с ACP даже в самые длинные ночи не превышало 400 кв. градусов.
Отработали до 05-00.Потом посмотрел, как Алексей до рассвета делал обработку.
180мм/540 ммПоле 1,5х2,1 градуса
По Радуге все хорошо, измерения с шумами порядка 0.65 - 0.8 угл. сек. Есть небольшая систематика вдоль трека (время) ~1.5 угл сек, но находится на уровне точности самой орбиты.Михаил
Только что фокусировал VT.Это ОНИ?
Каждый год радует! Куприянову привет!
А я-то думал, что это только мы сей НЛО зафиксировали! Этот вчера, кстати 1 апреля, несколько раз попадался...
http://adsabs.harvard.edu/abs/2017GCN..20886...1MMazaeva, E.; Pozanenko, A.; Kochergin, A.; Volnova, A.; Chornaya, E.; Matkin, A.; Molotov, I.GRB 170317A: ISON-Ussuriysk aferglow confirmation.GRB Coordinates Network, Circular Service, No. 20886, #1 (2017)00/2017
TITLE: GCN CIRCULARNUMBER: 20978SUBJECT: GRB 170325A: optical observations, possible OT/host detectionDATE: 17/04/04 20:20:06 GMTFROM: Alexei Pozanenko at IKI, MoscowE. Mazaeva (IKI), A. Pozanenko (IKI), V. Rumyantsev (CrAO), P. Minaev (IKI), E. Klunko (ISTP), A. Volnova (IKI), M. Eselevich (ISTP) report on behalf of larger GRB follow-up collaboration:Цe followed up the short GRB 170325A (Palmer et al., GCN 20938) with AZT-33IK telescope of Sayan observatory (Mondy) an ZTSh telescope of CrAO observatory. The burst was detected by GBM/Fermi (Bissaldi et al., GCN 20940) and also detected as 5.5 sigma non-triggered IBAS event of 0.1 s duration of SPI-ACS/INTEGRAL (see http://grb.rssi.ru/GRB170325A/GRB170325_SPI-ACS.png).We obtained several images in R-filter on March 26, March 29, and April 1 and cover all 90% error box of the BAT/Fermi (Palmer et al., GCN 20938). We investigated variability of sources in the BAT/Fermi error box between the three epochs. One source exhibits marginal fading between first and second epochs. Preliminary photometry of the source is followingDate UT start t-T0 Filter Exp. OT Err. UL (mid, days) (s)2017-03-26 14:10:51 1.28049 R 3600 21.94 0.15 22.22017-03-29 21:00:52 4.56314 R 3240 22.27 0.10 23.62017-04-01 15:46:59 7.35072 R 4100 22.45 0.25 22.6the photometry is based on nearby SDSS-DR9 starsSDSS-DR9_id R(Lupton transformations)J082954.53+203317.9 18.69J083002.05+203031.2 16.74J082950.18+203013.8 18.25J082949.90+203106.9 16.65Coordinates of the source are (J2000) 08:29:57.677 +20:30:51.75 with uncertainty of 0.7 arcsec in both coordinates. The finding chart can be found inhttp://grb.rssi.ru/GRB170325A/GRB170325A_Mondy_170326_2.pnghttp://grb.rssi.ru/GRB170325A/GRB170325A_CrAO_170329.pngThe source is not presented in SDSS-DR9, but clearly visible in r(=22.59), i(=22.10) filters, barely visible in u-filter (23.1), and not detected in g and z of SDSS images.We suggest the source is an afterglow and host candidates of the short GRB 170325A.
2-й выпуск журнала "Российский космос" за 2017 г.
Визит к месту будущей обсерватории Нуево-Леона.
TITLE: GCN CIRCULARNUMBER: 20992SUBJECT: GRB 170405A: ISON/Terskol optical observationsDATE: 17/04/06 12:12:17 GMTFROM: Alexei Pozanenko at IKI, Moscow E. Mazaeva (IKI), V. Agletdinov (KIAM), A. Pozanenko (IKI), A. Volnova (IKI), I. Molotov (KIAM) report on behalf of larger GRB follow-up collaboration:We observed the field of GRB 170405A (Troja et al., GCN 20984) with K-800 (0.8m) telescope of ISON/Terskol observatory starting on April, 05 (UT) 19:12:55, i.e. 45 minutes after GRB onset. We obtained several unfiltered images of 15 s exposure. The optical afterglow Troja et al., GCN 20984; Malesani et al., GCN 20988; Klotz et al., GCN 20989; Ugarte Postigo et al., GCN 20990; Martin-Carrillo et al., GCN 20991) is clearly visible in combined images. Preliminary photometry of the afterglow is followingDate UT start t-T0 Filter Exp. OT Err. UL (mid, days) (s)2017-04-05 19:12:55 0.03139 CR 72*15 17.27 0.10 20.12017-04-05 19:34:33 0.04300 CR 48*15 17.96 0.13 19.82017-04-05 19:49:05 0.06019 CR 110*15 18.39 0.14 20.42017-04-05 20:23:55 0.08543 CR 110*15 19.18 0.22 20.22017-04-05 21:01:48 0.11099 CR 107*15 n/d n/d 18.9Photometry is based on nearby USNO-B1.0 starsUSNO-B.1_id R20647-0315771 15.130647-0315754 15.450647-0315872 15.340647-0315921 15.080647-0315788 14.92Preliminary light curve of the afterglow can be found inhttp://grb.rssi.ru/GRB170405A/GRB170405A_light_curve.png
Цитата: Игорь от 29 Янв 2017 [17:31:03]В пятницу ИПМ подписал соглашение о сотрудничестве с тайваньской обсерваторией Люлин.Обсерватория находится на высоте 2862 м и имеет порядка 200 наблюдательных ночей.Видимой глазом засветки нет.В ближайшее время будет освобожден один из павильонов (внизу фото) - телескоп переедет в континентальный Китай.И в него предлагается поставить наш телескоп. Какой, еще предстоит подумать.Месторасположение обсерватории на карте: https://www.google.ru/maps/place/23%C2%B028'07.0%22N+120%C2%B052'25.0%22E/@23.4667076,118.4639857,660815m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d23.4686111!4d120.8736111
В пятницу ИПМ подписал соглашение о сотрудничестве с тайваньской обсерваторией Люлин.Обсерватория находится на высоте 2862 м и имеет порядка 200 наблюдательных ночей.Видимой глазом засветки нет.В ближайшее время будет освобожден один из павильонов (внизу фото) - телескоп переедет в континентальный Китай.И в него предлагается поставить наш телескоп. Какой, еще предстоит подумать.Месторасположение обсерватории на карте: https://www.google.ru/maps/place/23%C2%B028'07.0%22N+120%C2%B052'25.0%22E/@23.4667076,118.4639857,660815m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d23.4686111!4d120.8736111
Фото со встречи с Дуань И
Для посторонних лиц апрельские месячные циркуляры еще не опубликованы, но через окольные пути нашел один объект которому дали номер485288 (2011 AK)Discovered 2011-Jan-02 by ISON at Mayhill-ISONПо новым правилам отдали всего за одну первую ночь.
Цитата: Виктор Воропаев от 14 Апр 2017 [01:33:46]CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS. ISSUE 19Prepared by T. Flohrer and S. Frey6 April 2017 ESOC Robert-Bosch-Str. 5, D-64293 Darmstadt, GermanyНа стр. 5 и 62.2 Keldysh Institute for Applied Mathematics (KIAM)This source provides orbital data derived from ground-based optical observations. Data are provided only for objects for which no USSTRATCOM TLEs are published. Orbits given in this report are produced from measurements obtained in 2016 and prepared by Vladimir Agapov, Keldysh Institute for Applied Mathematics, Moscow (KIAM). They are a joint product of the wide cooperation of organizations including:• Center on collection, processing and analysis of information on space debris at the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (KIAM RAS, Moscow, Russia),• International scientific observation facilities network (ISON) coordinated by KIAM RAS and including the following observatories:– Ussuriysk Astrophysical Observatory of the Far East branch of the RAS (Gornotayozhnoye, Primorsky Krai, Russia),– Zvenigorod observatory of the Astronomy Institute of the RAS (INASAN) (Moscow oblast, Russia),– Crimean Astrophysical Observatory (Nauchny),– Ulugbek Astronomical Observatory (Kitab facilitiy, Qashqadaryo Province, Uzbekistan),– Observation facilities operated by the ”Astronomical Scientific Center”, JSC:∗ Artem (Primorsky Krai, Russia),∗ Blagoveshchensk (Amur region, Russia),∗ Kislovodsk observatory (Karachaevo-Cherkesskaya Republic, Russia),∗ Lesosibirsk (Krasnoyarsky Krai, Russia),∗ Milkovo (Kamchatka Krai, Russia),– Byurakan Astrophysical Observatory of the Armenian Academy of Sciences (Byurakan, Armenia),– Andrushivka Observatory (Zhytomyrs’ka oblast, Ukraine),– National observatory of Bolivia (Tarija, Bolivia),– Sayan Solar Observatory of the Institute of Solar-Terrestrial Physics of the Siberian branch of the RAS (Mondy, Republic of Buryatia, Russia),– Observation facility of the PGU (Tiraspol),– Odessa State University Astronomical Observatory (Mayaki, Odes’ka oblast, Ukraine),– Derenovka observation facility of Laboratory of space researches, Uzhhorod National University (Zakarpats’ka oblast, Ukraine),– Chuguyev observation facility of the Astronomy scientific and research institute of Kharkov national university (Kharkiv’ska oblast, Ukraine),– Cosala observation facility of the The Autonomous University of Sinaloa (Universidad Autonoma de Sinaloa, UAS, Mexico),– Khureltogoot observatory of the The Research Centre of Astronomy and Geophysics of the Mongolian Academy of Sciences– Observatory ”Peak Terskol” of the International Center for Astronomical, Medical and Ecological Research (Kabardino-Balkaria Republic, Russia),– E.Kharadze Abastumani Astrophysical Observatory of Ilia State University (Abastumani, Adigeni District, Georgia),– Mul’ta observation facility (Altai Republic, Russia),– Observatory of Altai State Pedagogical University (Barnaul, Altaisky Krai),– Observation facility of El Centro de Investigaciones de Ciencias Fisico Matematicas de la Universidad Autonoma de Nuevo Leon (UANL).• Astronomical Institute of the University of Bern, partner of ISON, operating the Zimmerwald observatory (Switzerland) and, for space debris observation, the ESA 1m telescope at the optical ground station (OGS), Izana, Tenerife, Spain,• Telescope Fabra ROA Montsec (TFRM) operated by the Reial Academia de Ciencies i Arts de Barcelona - Observatori Fabra, the Real Instituto y Observatorio de la Armada (ROA) and the Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Spain.The objects for which ephemeris was provided by KIAM were observed repeatedly by ground based telescopes. They were listed in issues 7 to 13 as ’Unidentified objects’. During the years 2011-2015 most of them were correlated to a launch thanks to the excellent work of satellite analysts and amateur observers. A source id (S-ID), consisting of a label and number, is given for each such object in order to correlate it with itself from an earlier report.
CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS. ISSUE 19Prepared by T. Flohrer and S. Frey6 April 2017 ESOC Robert-Bosch-Str. 5, D-64293 Darmstadt, Germany
http://www.gmv.com/en/Company/Communication/News/2017/03/MeteosatDeorbiting.htmlGMV provides critical support to METEOSAT-7 end-of-life operations with optical telescopesMeteosat-7 was launched in September 1997 and is operated by EUMETSAT, the European Organisation for the Exploitation of Meteorological Satellites. It is the last satellite of the first generation of Meteosat.First over Europe and next from its current orbital location over the Indian Ocean region at 36000 Km above our heads, it has been providing a fruitful service for almost two decades, a period that is now coming to an end.To avoid the proliferation of space debris in the crowded geostationary ring, EUMETSAT will conduct a safe re-orbiting into a so-called “graveyard” orbit, located at least 250 km above the current location. These end-of-life operations will be carried out in compliance with the latest recommendations included in the 24113 standard of the International Organization for Standardization (ISO) concerning space debris mitigation.The re-orbiting will be performed starting on 3 April 2017 and by means of successive maneuvers, every half day approximately. Nominally after the first three maneuvers, the orbit will be raised already above the ISO protected ring. The orbit maneuvers will also be used to spin-down the satellite and dissipate its kinetic energy. The satellite will continue performing further maneuvers, with the same periodicity, until all remaining on-board fuel will be finally exhausted. Just after that, in less than one week, Meteosat-7 will reach its final “graveyard” orbit from the geostationary ring and it will be passivated.In order to support these critical operations, GMV will task observations from 9 different telescopes worldwide to follow the spacecraft trajectory evolution every night. These telescopes, operated by GMV’s partner ISON (International Scientific Optical Network), are placed in distant locations in 6 different countries to ensure the highest redundancy in case of bad weather conditions or contingencies.The data collected will be processed and delivered on a daily basis, to cope with the EUMETSAT augmented monitoring needs. This data will be used in support of operational tracking, based on regular ranging from the EUMETSAT ground stations network. This will ensure the highest reliability of the two major processes involved in this monitoring activity: the orbit determination process (ranging and optical data used singularly, or with data fusion technique) and the restitution/calibration of the executed maneuvers, both to be carried-out during these critical operations.As part of this activity, and in parallel with these operations at EUMETSAT, GMV will make use of its internal state-of-the-art flight dynamics tools to perform an independent checking and monitoring of the maneuvers and orbital evolution of the spacecraft. GMV solutions, making use of all telescopes and ranging stations involved, will verify the correctness of EUMETSAT operational data.