ВНИМАНИЕ! На форуме началось голосование в конкурсе - астрофотография месяца - АПРЕЛЬ!
0 Пользователей и 1 Гость просматривают эту тему.
проблема только в численном методе
Цитата: Ajaja от 02 Мар 2017 [21:52:58]Численные методы можно применять со сколь угодно мелким шагом, регулируя тем самым точность расчета, но это никак не отразится на точности расчета реального положения тел, т.к. точность будет ограничена погрешностями в исходных данных и эта погрешность при расчетах будет только увеличиваться, какой бы метод не использовался.Если бы точность расчета зависела исключительно от мелкости шага расчета... Эх... Увы, увы, природа сложнее. Мелкость шага не регулирует точность расчета полностью. А в некоторых случаях вообще никак не регулирует, например, когда система оказалась в точке бифуркации.
Численные методы можно применять со сколь угодно мелким шагом, регулируя тем самым точность расчета, но это никак не отразится на точности расчета реального положения тел, т.к. точность будет ограничена погрешностями в исходных данных и эта погрешность при расчетах будет только увеличиваться, какой бы метод не использовался.
Можно попробовать взять исходные данные с http://ssd.jpl.nasa.gov/horizons.cgi
Барицентр системы Плутон-Харон движется вокруг Солнца. Из-за того что размер орбиты большой, вот и получилось на небольшом отрезке времени почти равномерное и прямолинейное движение.
Там были неплохие упрощенные модели расчета эфемерид, которые не "уплывали" на промежутках в несколько десятков лет
Моделируем движение, и система начинает "уползать".
Предлагаю начать с прочтения вот этого
Но все в итоге упертся в погрешность исходных данных.
Можно, но если эти данные использовать, то получается у меня масса Плутона и Харона не достаточно точно известны, а это уже другой вопрос)
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/plu055.cmtGM - гравитационные параметры тел
Цитата: Ajaja от 11 Мар 2017 [11:04:54]https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/plu055.cmtGM - гравитационные параметры тела то у меня при вычислениях очень сильно не сходятся элементы орбиты - полуось в два раза, а эксцентриситет даже не близко.
Ephemeris Type [change] : ELEMENTSTarget Body [change] : Charon (PI) [901]Center [change] : Pluto (body center) [500@999]Time Span [change] : Start=2015-01-01, Stop=2015-01-10, Step=1 dTable Settings [change] : output units=KM-S...Keplerian GM : 9.7559000499039507E+02 km^3/s^2...2457023.500000000 = A.D. 2015-Jan-01 00:00:00.0000 TDB EC= 1.477380420046948E-04 QR= 1.959396192601740E+04 IN= 1.128963726104548E+02 OM= 2.274017192362429E+02 W = 1.898761621437299E+02 Tp= 2457022.905704734381 N = 6.523439875612244E-04 MA= 3.349597911873988E+01 TA= 3.350532360219091E+01 A = 1.959685712731884E+04 AD= 1.959975232862027E+04 PR= 5.518560864580865E+05 EC Eccentricity, e QR Periapsis distance, q (km) IN Inclination w.r.t XY-plane, i (degrees) OM Longitude of Ascending Node, OMEGA, (degrees) W Argument of Perifocus, w (degrees) Tp Time of periapsis (Julian Day Number) N Mean motion, n (degrees/sec) MA Mean anomaly, M (degrees) TA True anomaly, nu (degrees) A Semi-major axis, a (km) AD Apoapsis distance (km) PR Sidereal orbit period (sec)
Ну так сравните с тем же Horizons, он умеет и элементы орбиты генерировать.
Цитата: Ajaja от 11 Мар 2017 [16:36:43]Ну так сравните с тем же Horizons, он умеет и элементы орбиты генерировать.Я знаю какие числа должны получится, но у меня даже самое элементарное - большая полуось - получилась в два раза меньше. Единственное что совпало - наклонение орбиты. А так как все элементы рассчитываются только из двух констант, то логично предположить что я их неправильно посчитал. (У меня наибольшие подозрения на счёт постоянной энергии, но я не знаю чему она должны быть равна)
берете его скорость относительно Плутона
Target body name: Pluto (999) {source: plu055l_merged}Center body name: Pluto Barycenter (9) {source: plu055l_merged}Center-site name: BODY CENTER*******************************************************************************Output units : KM-S Output type : GEOMETRIC cartesian statesOutput format : 3 (position, velocity, LT, range, range-rate)Reference frame : ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch *******************************************************************************JDTDB X Y Z VX VY VZ LT RG RR*******************************************************************************$$SOE2457023.500000000 = A.D. 2015-Jan-01 00:00:00.0000 TDB -1.469439551574074E+03 -7.555931024424377E+02 1.350215119844029E+03 6.238419402226713E-03 1.693834777870799E-02 1.627254565976924E-02 7.117709438900199E-03 2.133835608017691E+03 2.792263306690860E-06
Target body name: Charon (901) {source: plu055l_merged}Center body name: Pluto Barycenter (9) {source: plu055l_merged}Center-site name: BODY CENTER*******************************************************************************Output units : KM-S Output type : GEOMETRIC cartesian statesOutput format : 3 (position, velocity, LT, range, range-rate)Reference frame : ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch *******************************************************************************JDTDB X Y Z VX VY VZ LT RG RR*******************************************************************************$$SOE2457023.500000000 = A.D. 2015-Jan-01 00:00:00.0000 TDB 1.202424140083403E+04 6.183415842751257E+03 -1.104788638477244E+04 -5.104149256575340E-02 -1.385895457549670E-01 -1.331441087647647E-01 5.824231666426191E-02 1.746060727239344E+04 1.540413229915741E-05
Ephemeris / WWW_USER Sat Mar 11 14:36:10 2017 Pasadena, USA / Horizons *******************************************************************************Target body name: Charon (901) {source: plu055l_merged}Center body name: Pluto (999) {source: plu055l_merged}Center-site name: BODY CENTER*******************************************************************************Start time : A.D. 2015-Jan-01 00:00:00.0000 TDBStop time : A.D. 2015-Jan-02 00:00:00.0000 TDBStep-size : 1440 minutes*******************************************************************************Center geodetic : 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)}Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)}Center radii : 1195.0 x 1195.0 x 1195.0 km {Equator, meridian, pole} Keplerian GM : 9.7559000499039507E+02 km^3/s^2Output units : KM-S, deg, Julian Day Number (Tp) Output type : GEOMETRIC osculating elementsOutput format : 10Reference frame : ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch *******************************************************************************JDTDB EC QR IN OM W Tp N MA TA A AD PR*******************************************************************************$$SOE2457023.500000000 = A.D. 2015-Jan-01 00:00:00.0000 TDB EC= 1.477380420046948E-04 QR= 1.959396192601740E+04 IN= 1.128963726104548E+02 OM= 2.274017192362429E+02 W = 1.898761621437299E+02 Tp= 2457022.905704734381 N = 6.523439875612244E-04 MA= 3.349597911873988E+01 TA= 3.350532360219091E+01 A = 1.959685712731884E+04 AD= 1.959975232862027E+04 PR= 5.518560864580865E+05
У G порядок е-11
Vp_h = (0.572799119679801156e-1, 0.155527893533674966, 0.149416654424533946)
Цитата: Ajaja от 12 Мар 2017 [01:49:09]Vp_h = (0.572799119679801156e-1, 0.155527893533674966, 0.149416654424533946)Что-то я не пойму как вы это получили. Взять хотя-бы часть Z - у Харона и Плутона там е-1 и е-2, а у вас получается е+0, даже если складывать не получается.
Сравниваем:
но GM высчитывайте исходя из того, что большие полуоси будут уже другие
Цитата: Ajaja от 13 Мар 2017 [20:41:32]но GM высчитывайте исходя из того, что большие полуоси будут уже другие Можете пояснить, а то я не понимаю откуда это число надо брать.
Но я особого смысла в таких вычислениях не вижу.
(по формуле, связывaющей период, полуось и GM)
То есть Вы интегрируете положение методом правых прямоугольников.Каждый метод интегрирования имеет погрешности. Тут Вы их наблюдаете во всей красе.