Телескопы покупают здесь


A A A A Автор Тема: Сила,действующая на равномерно ускоренный заряд.  (Прочитано 57206 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Хартиков Сергей

  • *****
  • Сообщений: 7 395
  • Благодарностей: 33
  • Мне нравится этот форум!
    • Сообщения от Хартиков Сергей
     Уважаемый Вадим Николаевич (Matwadnik) привел ссылку на достаточно полное объяснение рассматриваемого в этой теме "парадокса". За это ему спасибо: я в свое время как-то умудрился пропустить данную статью в "Успехах физических наук". От себя добавлю, что еще более полная информация содержится во втором томе Ландау-Лифшица (правда, там это рассредоточено по разным параграфам, но зато приведены подробные выводы всех формул). Учитывая, что разговор немного "заглох" (может, все отправились читать статью Гинзбурга?), разрешите обобщить ответы на затронутые здесь вопросы.

     1) Натяжение нити в равномерно ускоренной системе (в корабле) и в условиях постоянного однородного гравитационного поля будут в точности одинаковы (что соответствует принципу эквивалентности).

     2) Сила "радиационного торможения" равномерно ускоренного заряда в точности равна нулю (эта формула есть и у Гинзбурга, и, как я написал, подробно выведена в Ландау-Лифшице). Для релятивистского случая равноускоренного движения - то же самое.

     3) Тем не менее, в случае равномерно ускоренного заряда имеется поток энергии электромагнитного поля через любую замкнутую поверхность, окружающую заряд.

     4) В условиях равенства нулю тормозящей силы закон сохранения энергии выражается в том, что указанный поток ЭМ-энергии в точности равен уменьшению ЭМ-энергии объема, ограниченного рассматриваемой замкнутой поверхности, содержащей заряд.

     5) Наличие потока ЭМ-энергии не означает автоматически наличия так называемых "свободных ЭМ-волн", т.е. фотонов. Например, поток энергии есть и в случае равномерно движущегося заряда, когда о волнах никто не говорит. По определению свободным ЭМ-полем называется поле в так называемой волновой зоне, где можно считать, что выполняются волновые уравнения Максвелла. В случае равномерно движущегося заряда и в случае равноускоренно движущегося заряда волновая зона находится на бесконечности. Другими словами: во всех этих (идеальных) случаях есть некоторое изменение поля, есть поток энергии, но нет фотонов. Получается, что выбором системы отсчета мы можем "исключить" поток ЭМ-энергии, что находится в соответствии и с принципом эквивалентности и с уравнениями Максвелла. Но противоречия не возникает, так как нет фотонов, которые, конечно, нельзя исключить выбором системы отсчета.
     Если же рассматривается не идеальный случай равномерно ускоренного движения, то волновая зона уже не находится на бесконечности, фотоны появляются, но тогда и само движение не являлось все время равномерно ускоренным. То есть: был какой-то момент времени ноль, до которого заряд не был ускорен (чем больше прошло времени, тем дальше отодвигается волновая зона от заряда). Но раз заряд не всегда был равномерно ускорен, то и нет никакой эквивалентности постоянному полю (нет противоречия принципу эквивалентности), а также в определенный промежуток времени существовала "радиационная тормозная" сила.

massa

  • Гость
     

     1) Натяжение нити в равномерно ускоренной системе (в корабле) и в условиях постоянного однородного гравитационного поля будут в точности одинаковы (что соответствует принципу эквивалентности).

Сережа, Вы считаете,что Вадим Николаевич уже пришел к такому выводу? Или это ваша личная точка зрения?

Оффлайн Хартиков Сергей

  • *****
  • Сообщений: 7 395
  • Благодарностей: 33
  • Мне нравится этот форум!
    • Сообщения от Хартиков Сергей
     По крайней мере, он написал так: "Наверно, все-таки натяжение нити заряженного и незаряженного шариков в лифте, который в космосе тянут с ускорением g, будет точно такое же, как и на Земле."

     Что касается указанных мною выводов (1-5) - это ответ на Ваш вопрос, который дает электродинамика (и СТО - в случаях, когда рассматривается релятивистское движение).

massa

  • Гость
 

     2) Сила "радиационного торможения" равномерно ускоренного заряда в точности равна нулю (эта формула есть и у Гинзбурга, и, как я написал, подробно выведена в Ландау-Лифшице). Для релятивистского случая равноускоренного движения - то же самое.

Сережа,тут,наверное для "ясности",Вам следовало бы добавить,что: 1) у ЛЛ формула ((75.8 )
изд.1973г), на которую ссылается и Г-г, "выведена" (строгий вывод отсутствует) для заряда во внешнем э/м поле, 2) сами авторы указывают на ограниченную применимость этой формулы. Кстати,если Вы знаете строгий вывод,то буду признателен,если сообщите,при каких допущениях из (75.5) получена (75.8 ).
« Последнее редактирование: 10 Апр 2006 [03:39:48] от massa »

massa

  • Гость


     

     5)
     Если же рассматривается не идеальный случай равномерно ускоренного движения, то волновая зона уже не находится на бесконечности, фотоны появляются, но тогда и само движение не являлось все время равномерно ускоренным. То есть: был какой-то момент времени ноль, до которого заряд не был ускорен (чем больше прошло времени, тем дальше отодвигается волновая зона от заряда). Но раз заряд не всегда был равномерно ускорен, то и нет никакой эквивалентности постоянному полю (нет противоречия принципу эквивалентности), а также в определенный промежуток времени существовала "радиационная тормозная" сила.

Сережа,в задаче нет ни слова про ПЭ и,если Вы меня относите к "покусителям" на него,то напрасно. Вы лучше скажите,вот в этом "неидеальном" случае, ниточка заряженного шарика бутет натянута также,как на земле или иначе? А,может быть,Вы даже умеете вычислять эту силу? Если так,то просьба поделиться. И,вот еще. Что значит: ...в определенный промежуток времени существовала "радиационная тормозная" сила? Сила определяемая формулой (75.8 ) ЛЛ ? Откуда она взялась? И какими условиями выделен этот промежуток?

massa

  • Гость
   

     5) Наличие потока ЭМ-энергии не означает автоматически наличия так называемых "свободных ЭМ-волн", т.е. фотонов. Например, поток энергии есть и в случае равномерно движущегося заряда, когда о волнах никто не говорит. По определению свободным ЭМ-полем называется поле в так называемой волновой зоне, где можно считать, что выполняются волновые уравнения Максвелла. В случае равномерно движущегося заряда и в случае равноускоренно движущегося заряда волновая зона находится на бесконечности. Другими словами: во всех этих (идеальных) случаях есть некоторое изменение поля, есть поток энергии, но нет фотонов. Получается, что выбором системы отсчета мы можем "исключить" поток ЭМ-энергии, что находится в соответствии и с принципом эквивалентности и с уравнениями Максвелла. Но противоречия не возникает, так как нет фотонов, которые, конечно, нельзя исключить выбором системы отсчета.
     

Сережа,извините,может я и ошибаюсь,но мне кажется,что тут у Вас полная "каша". У неускоренного заряда вектор Пойнтинга отличен от нуля,это так,но нет потока энергии через окружающую поверхность. У ускоренного заряда появляется это самое свободное поле,уносящее часть энергии от заряда. Свободное э/м поле  "свободно"  везде,а не только в волновой зоне. А "волновая зона"-это просто условное название той части пространства,где волновая часть э/м поля начинает преобладать над неволновой частью э/м поля и где этой неволновой частью можно пренебречь,если нравится. Но, в отношении потока энергии,неволновой частью можно пренебрегать везде,она не дает вклада. Потом,что за волновые ур-я М-ла,которые где-то выполняются,а где-то нет? И,наконец,в "идеальном"- то случае ниточка как будет натянута,также или нет?

Matwadnik

  • Гость
И,наконец,в "идеальном"- то случае ниточка как будет натянута,также или нет?

Уважаемый, massa!
Я написал Георгию более полный ответ, чем тот, что написал Вам, но не стал посылать его. Наверное, он будет преждевременным. Многое нужно еще обдумать. Все эти скоропалительные ответы - это простой треп.
Я сейчас обрисую Вам в общих чертах, как я себе представляю излучение ускоряющегося заряда.
Прежде всего, я считаю, что об излучении этим зарядом следует говорить как о фиктивном узлучении, которое реально проявляет себя только в присутствии материальных тел, поглощающих это излучение.
Мне кажется, что ситуация с заряженным шариком проясняется, если ввести вот такой, небрежно сформулированный, сделанный методом кавалерийского наскока «закон» (собственно, это не закон, а схематических набросок):

Поле ускоряемого заряженного тела оказывает на физический объект, ускорение которого по величине или направлению отличается от ускорения данного электрического тела, лучевое воздействие. На физический объект, который имеет ускорение, равное по величине и направлению ускорению заряженного тела, такого лучевого воздействия нет.

В идеальном случае натяжение нитей в системе отсчета с естественной гравитацией и в ускоряющейся системе отсчета с искусственной гравитацией должны быть одинаковыми.
Под идеальным случаем я понимаю отсутствие движущихся в этих системах с ускорением материальных тел вблизи шариков. Если нет ускоряющихся тел, то нет и поглощения телами излучения от шариков, а именно при поглощении излучения возникает «радиационная тормозная сила». Натяжение нитей должно быть одинаковым.
Если вблизи покоящихся заряженных шариков есть ускоряющиеся тела, то в этих телах происходит поглощение излучения, которое является реальным для этих шариков. При наличии таких ускоряющихся тел может произойти увеличение натяжения нити, удерживающей заряженный шарик. Но это произойдет и в реально гравитирующей системе и в искусственно гравитирующей. ПЭ не затрагивается.
Если рассмотреть свободное падение заряженного шарика в гравитирующей с ускорением g системе отсчета, то шарик будет падать с ускорением g, если считать систему нематериальной и не способной к поглощению излучения, и будет падать несколько замедленно, если это, например, Земля, способная поглощать излучение от падающего на нее заряда. Если заряд падает, находясь в неускоряющейся экранирующей оболочке, то его торможении будет происходит с учетом формулы полной излучаемой энергии. Т.е. на поведение заряженного шарика сказывается не столь фиктивно излученная энергия, сколь реально поглощенная.
 Это грубая схема, которую нужно не один раз обдумать. Короче говоря, просто «выкрик с места». ПЭ, конечно, остается на своем месте. Речь здесь не о ПЭ.

Оффлайн Хартиков Сергей

  • *****
  • Сообщений: 7 395
  • Благодарностей: 33
  • Мне нравится этот форум!
    • Сообщения от Хартиков Сергей
     Цитата massa: "следовало бы добавить,что: 1) у ЛЛ формула ((75.8 )
изд.1973г), на которую ссылается и Г-г, "выведена" (строгий вывод отсутствует) для заряда во внешнем э/м поле, 2) сами авторы указывают на ограниченную применимость этой формулы. Кстати,если Вы знаете строгий вывод,то буду признателен,если сообщите,при каких допущениях из (75.5) получена (75.8 ).
"

     Уважаемый massa, строгий вывод присутствует, так как (75.8 ) получена из (75.5) напрямую: d - это дипольный момент, который для системы из одного заряда равен r*e, поэтому третья производная по d дает вторую по v. Формула может использоваться и при наличии внешнего поля и при его отсутствии (в эту формулу параметры внешнего поля не входят). "Ограниченность применения" относится к случаю, когда отсутствуют любые другие силы, кроме данной силы торможения. В нашей задаче равноускоренное движение заряда определяется внешней силой.

     Цитата massa: "в задаче нет ни слова про ПЭ и,если Вы меня относите к "покусителям" на него,то напрасно. Вы лучше скажите,вот в этом "неидеальном" случае, ниточка заряженного шарика бутет натянута также,как на земле или иначе? А,может быть,Вы даже умеете вычислять эту силу? Если так,то просьба поделиться. И,вот еще. Что значит: ...в определенный промежуток времени существовала "радиационная тормозная" сила? Сила определяемая формулой (75.8 ) ЛЛ ? Откуда она взялась? И какими условиями выделен этот промежуток?"

     В задаче не сказано про принцип эквивалентности, но обычно она используется для демонстрации "парадокса". В неидеальном случае сила торможения не равна нулю, так как в момент старта существуют более высокие производные скорости, чем первая. Значит, и натяжение нити будет больше. В первом приближении сила вычислена в Ландау-Лифшице - это указанная формула (75.8 ). Откуда взялась сила - ясно видно из формулы (75.8 ). Промежуток определеяется временем старта и выхода на равноускоренное движение.

     Цитата massa: "может я и ошибаюсь,но мне кажется,что тут у Вас полная "каша". У неускоренного заряда вектор Пойнтинга отличен от нуля,это так,но нет потока энергии через окружающую поверхность."

     Рассмотрим случай равномерного движения с малой скоростью. Тогда вектор Пойнтинга (я опускаю все константы): S = E x [v x E] - он всегда направлен по касательной к сфере с центром в точке расположения заряда. Нетрудно посчитать дивергенцию в сферических координатах - там есть только компонента по "тетта", которая зависит только от "тетта", так что дивергенция не равна нулю. Ничто не мешает по теореме Гаусса иметь ненулевой поток через замкнутую поверхность.
     Легко найти конкретный пример: рассматриваем сферу с центром в точке расположения заряда. Для такой сферы поток через поверхность, очевидно равен нулю (вектор Пойнтинга направлен по касательной). Усекаем сферу спереди: учитывая, что проекция вектора Пойнтинга направлена вперед, получаем ненулевой поток через эту плоскую поверхность, тогда как через остальную часть поверхности потока нет. То есть, мы получили ненулевой поток энергии из объема, ограниченного замкнутой поверхностью, содержащей заряд.

     Цитата massa: "Свободное э/м поле  "свободно"  везде,а не только в волновой зоне. А "волновая зона"-это просто условное название той части пространства,где волновая часть э/м поля начинает преобладать над неволновой частью э/м поля и где этой неволновой частью можно пренебречь,если нравится. Но, в отношении потока энергии,неволновой частью можно пренебрегать везде,она не дает вклада. Потом,что за волновые ур-я М-ла,которые где-то выполняются,а где-то нет?"

     Может, я плохо выразился: речь идет о "чистых" волновых уравнениях "без источников". Аналогичный случай мы имеем и в случае равномерного движения заряда (о чем я написал в предыдущем абзаце). Любое ЭМ поле можно разложить в ряд Фурье на ЭМ волны. Но не в каждом случае они представляют из себя фотоны.
     Таково уж используемое определение потоков энергии через вектор Пойнтинга: как известно, это определение - одно из многих возможных. С моей личной точки зрения, это и приводит к "парадоксам", когда слишком прямо понимают "поток энергии в виде вектора Пойнтинга = ЭМ волны".

     Цитата massa: "И,наконец,в "идеальном"- то случае ниточка как будет натянута,также или нет?"

     Я на это уже отвечал: одинаково.

massa

  • Гость
Вадим Николаевич, Сережа, доброе утро ! Объясните мне,в чем "страшилка" ниточки, растянутой иначе,чем на земле? Почему Вы готовы привлекать такие сложные (и поэтому не бесспорные) концепции для обоснования "одинаковой растянутости"? Сережа ищет "выход" в спорных электродинамических допущениях, Вадим Николаевич, предлагает какую-то совсем особую науку. Зачем все это? Чем "пугает" другое натяжение нити? Ну,давайте выбросим нити,волны,фотоны,ссылки на ... . Приделаем к шарикам ракетные двигатели и будем следить только за джоулями,т.е. за расходом топлива. Может будет проще обсуждать. Но мне,первым делом,хочется понять в чем "страшилка" ?
« Последнее редактирование: 11 Апр 2006 [07:41:34] от massa »

Matwadnik

  • Гость
Вадим Николаевич, Сережа, доброе утро ! Объясните мне,в чем "страшилка" ниточки, растянутой иначе,чем на земле? Почему Вы готовы привлекать такие сложные (и поэтому не бесспорные) концепции для обоснования "одинаковой растянутости"? Сережа ищет "выход" в спорных электродинамических допущениях, Вадим Николаевич, предлагает какую-то совсем особую науку. Зачем все это? Чем "пугает" другое натяжение нити? Ну,давайте выбросим нити,волны,фотоны,ссылки на ... . Приделаем к шарикам ракетные двигатели и будем следить только за джоулями,т.е. за расходом топлива. Может будет проще обсуждать. Но мне,первым делом,хочется понять в чем "страшилка" ?

Приветствую Вас, massa!
Я не боюсь «страшилки» в виде неодинаковых натяжений нитей для заряженного и незаряженного шарика. Я ведь пишу о том, что при определенных условиях это может наблюдаться, но если эти условия аналогичны, то неодинаковость натяжений нитей для заряженного и незаряженного заряда проявляет себя аналогично во всех одинаково гравитирующих системах.
Какой-то особой науки я не предлагаю, я предлагаю уточнение формулировки общеизвестного эффекта.
К сожалению, из-за командировки вряд ли смогу участвовать в дискуссии, которую Вы инициировали. Еще раз спасибо. В очередной раз, обратившись к ускорению заряда, я окончательно уверовался в отсутствии каких-либо электродинамических огрехов в эйнштейновском принципе эквивалентности, а заодно понял, почему на белом свете существует такая эквивалентность. Кажется, и еще кое-что.

massa

  • Гость
Всем, добрый день! Сожалею, Вадим Николаевич, что ваше участие в обсуждении прерывается,надеюсь -  не надолго. Желаю Вам счастливого пути и хочу попросить Вас поразмышлять на досуге (если будет) вот над какой точкой зрения.Электродинамика однозначно предписывает ускоренному заряду излучать джоули. "Доставить" их заряду может только ниточка. Если сила ниточки такая же, как на земле,то работа ниточки обеспечит только кинетические джоули, соответствующие ускорению "же". Следовательно, механика требует допустить большую силу. И тогда, та же механика требует от излучющего заряда иметь большую массу (силу/ускорение), чем у неизлучающего на земле. Но это масса инертная, а у "земного" заряда гравитационная и они НЕ РАВНЫ. И  ПЭ становится ТУТ, просто не причем. Он благополучно занимает свое достойное место в ОТО и нет никакой необходимости подвергать его сомнению,как и нет необходимости искать непротиворечивый способ применить его в ДАННОМ случае. До встречи.

massa

  • Гость
Сережа Хартиков,присоединяюсь к поздравлениям в твой адрес. Если есть время и желание продолжить обсуждение темы,то обрати внимание на #30. Желаю успехов на новом поприще.

massa

  • Гость
george teltzhko,добрый вечер!  Хотелось бы узнать и ваше отношение к точке зрения, сообщенной в #30. Буду признателен,если Вы его выскажете.

Оффлайн Хартиков Сергей

  • *****
  • Сообщений: 7 395
  • Благодарностей: 33
  • Мне нравится этот форум!
    • Сообщения от Хартиков Сергей
     Цитата massa: "Но мне,первым делом,хочется понять в чем "страшилка" ?"

     Уважаемый massa, "страшилка" возникла у Вас, вот Вы и отвечайте: у меня никакой "страшилки" нет. Тем более, что электродинамика является также и органической частью ОТО. Так что равенство нулю силы - это следствие электродинамики даже без привлечения конкретных расчетов.

     Цитата massa: "Зачем все это? Чем "пугает" другое натяжение нити? Ну,давайте выбросим нити,волны,фотоны,ссылки на ... . Приделаем к шарикам ракетные двигатели и будем следить только за джоулями,т.е. за расходом топлива. Может будет проще обсуждать."

     С удовольствием. Расчет силы может производиться разными способами:

     1) Непосредственное вычисление силы. Конкретный строгий вывод приведен в Ландау-Лифшице в параграфе "Торможение излучением". Нет смысла его здесь повторять, так как у всех есть возможность его прочитать непосредственно в книге. Я укажу лишь следующее. Тормозная сила появляется при использовании членов третьего порядка в разложении поля. Для одного заряда (в поле или без) она равна f = v''*2e2/(3c3)   (75.8 ). Члены разложения более высокого порядка не дают более низких производных (это указано также и у Фейнмана). Результат: при равномерном или при равноускоренном движении сила торможения излучением равна нулю.

     2) Вычисление силы через поток энергии. В отличие от предыдущего, необходимо убедиться,что поток ЭМ-энегрии, расчитанный с помощью вектора Пойнтинга, образован именно механической работой, а не уменьшением ЭМ-энергии в заданном объеме. В данном случае этого сделать нельзя, поэтому метод через энергию не дает никакого ответа.

     Точный вывод электродинамики: сила торможения появляется только, когда есть вторая или более высокая производная от скорости заряда. Если Вы, уважаемый massa, считаете это "спорными электродинамическими допущениями", то я прошу Вас привести строгое опровержение вывода формул из Ландау-Лифшица.
« Последнее редактирование: 11 Апр 2006 [21:56:36] от Хартиков Сергей »

Оффлайн george telezhko

  • *****
  • Сообщений: 5 364
  • Благодарностей: 21
  • Мне нравится этот форум!
    • Сообщения от george telezhko
    • George Telezhko. Gravitation and Perception
george teltzhko,добрый вечер!  Хотелось бы узнать и ваше отношение к точке зрения, сообщенной в #30. Буду признателен,если Вы его выскажете.

Добрый вечер, massa!
Подробный разбор задачи об излучении приводит Рудольф Пайерлс в сборнике "Сюрпризы в теоретической физике", где показывает, что сила радиационного трения в случае релятивистски равномерно ускоренного заряда равна нулю. То есть ниточка, за которую его тянут, будет натянута так же, как и в случае неподвижного заряда, висящего в однородном гравитационном поле.

Излучение ускоренного заряда имеет место, но оно наблюдается при условиях, которые не могут быть выполнены при наблюдении неподвижного заряда в статическом поле - доказательство этого обстоятельства Пайерлс так же приводит.

Я не пытался искать ошибок в его построениях, признаюсь сразу.

massa

  • Гость


Я не пытался искать ошибок в его построениях, признаюсь сразу.

Георгий (к Вам можно так обращаться?), я и не призываю Вас искать ошибки в известных работах, Я приглашал Вас (и приглашаю) обсудить мою точку зрения. Поискать внутренние и внешние противоречия, используя весь ваш "физический багаж": знания,опыт,интуицию. А по поводу известных работ? Пока это тоже,лишь точки зрения. Более авторитетные,менее авторитетные,но точки зрения.

massa

  • Гость
     

     Уважаемый massa, "страшилка" возникла у Вас, вот Вы и отвечайте: у меня никакой "страшилки" нет. Тем более, что электродинамика является также и органической частью ОТО. Так что равенство нулю силы - это следствие электродинамики даже без привлечения конкретных расчетов.

Уважаемый Сергей, должен отметить,что Вы очень уверенно вступили в должность: вон, уже "ставите меня на место". Принимаю, но... Не могли бы Вы уважить новичка-старичка и допустить  "на секунду" вместе со мной,что ниточка растянута сильней. Ведь,если это допущение неверное,то мы должны (как это обычно и бывает в физике) придти к какому-то противоречию с известными законами или принципами и все будет нормально: ошибка допущения налицо.  Вот как надо с старыми упрямцами. Конечно, "покрикивать" иногда, тоже необходимо.

massa

  • Гость
     Тормозная сила появляется при использовании членов третьего порядка в разложении поля. Для одного заряда (в поле или без) она равна f = v''*2e2/(3c3)   (75.8 ).

 

Сережа,несмотря на то,что это следует и из вывода, авторы специально подчеркивают перед (75.8 ),что "во внешнем поле". И ваше "или без" является произвольным допущением,на котором Вы строите всю полемику. Я не против допущений. Но на этом допущении  зарабатывается противоречие с законом сохранения энергии.


Оффлайн Хартиков Сергей

  • *****
  • Сообщений: 7 395
  • Благодарностей: 33
  • Мне нравится этот форум!
    • Сообщения от Хартиков Сергей
     Цитата massa: "должен отметить,что Вы очень уверенно вступили в должность: вон, уже "ставите меня на место"."

     Уважаемый massa, все это не имеет никакого отношения к моей "модераторской" работе: Вы сами заговорили о "страшилке", намекая, будто меня удерживает принцип эквивалентности. Я ответил, что принцип эквивалентности меня не удерживает, и что я не вижу никакой "страшилки". Со мной можно спорить, как и прежде - за это модератор не имеет права наказывать. Наказывают за нарушение правил форума.

     Цитата massa: "Не могли бы Вы уважить новичка-старичка и допустить  "на секунду" вместе со мной,что ниточка растянута сильней. Ведь,если это допущение неверное,то мы должны (как это обычно и бывает в физике) придти к какому-то противоречию с известными законами или принципами и все будет нормально: ошибка допущения налицо.  Вот как надо с старыми упрямцами. Конечно, "покрикивать" иногда, тоже необходимо."

     Хорошо, предполагаю, что ниточка растянута больше, чем прежде. Тут же прихожу к противоречию с тем фактом, что никакой дополнительной силы нет. Что Вас не устраивает?

     Цитата massa: "несмотря на то,что это следует и из вывода, авторы специально подчеркивают перед (75.8 ),что "во внешнем поле". И ваше "или без" является произвольным допущением,на котором Вы строите всю полемику. Я не против допущений."

     Уважаемый massa, Вы пытаетесь оспаривать вывод из Ландау-Лифшица, не изучая сам вывод, а указывая на некоторые слова в его конце. Изучите вывод: там нигде не требуется наличия ненулевого внешнего поля. Это не произвольное допущение: я этот вывод подробно изучил и нигде противоречий не нашел. Укажите конкретное место в выводе из Ландау-Лифшица, где есть ошибка. Слова о "внешнем поле" используются авторами для того, чтобы данную силу можно было применять и там, где есть внешнее поле.

     Цитата massa: "Но на этом допущении  зарабатывается противоречие с законом сохранения энергии."

     Никакого противоречия с законом сохранения энергии нет: он прекрасно работает с нулевой тормозной силой. Не согласны - докажите.

massa

  • Гость
     Цитата massa: "должен отметить,что Вы очень уверенно вступили в должность: вон, уже "ставите меня на место"."

     Уважаемый massa, все это не имеет никакого отношения к моей "модераторской" работе: Вы сами заговорили о "страшилке", намекая, будто меня удерживает принцип эквивалентности. Я ответил, что принцип эквивалентности меня не удерживает, и что я не вижу никакой "страшилки". Со мной можно спорить, как и прежде - за это модератор не имеет права наказывать. Наказывают за нарушение правил форума.

     Цитата massa: "Не могли бы Вы уважить новичка-старичка и допустить  "на секунду" вместе со мной,что ниточка растянута сильней. Ведь,если это допущение неверное,то мы должны (как это обычно и бывает в физике) придти к какому-то противоречию с известными законами или принципами и все будет нормально: ошибка допущения налицо.  Вот как надо с старыми упрямцами. Конечно, "покрикивать" иногда, тоже необходимо."

     Хорошо, предполагаю, что ниточка растянута больше, чем прежде. Тут же прихожу к противоречию с тем фактом, что никакой дополнительной силы нет. Что Вас не устраивает?

     Цитата massa: "несмотря на то,что это следует и из вывода, авторы специально подчеркивают перед (75.8 ),что "во внешнем поле". И ваше "или без" является произвольным допущением,на котором Вы строите всю полемику. Я не против допущений."

     Уважаемый massa, Вы пытаетесь оспаривать вывод из Ландау-Лифшица, не изучая сам вывод, а указывая на некоторые слова в его конце. Изучите вывод: там нигде не требуется наличия ненулевого внешнего поля. Это не произвольное допущение: я этот вывод подробно изучил и нигде противоречий не нашел. Укажите конкретное место в выводе из Ландау-Лифшица, где есть ошибка. Слова о "внешнем поле" используются авторами для того, чтобы данную силу можно было применять и там, где есть внешнее поле.

     Цитата massa: "Но на этом допущении  зарабатывается противоречие с законом сохранения энергии."

     Никакого противоречия с законом сохранения энергии нет: он прекрасно работает с нулевой тормозной силой. Не согласны - докажите.

В рамках правил форума не нахожу ни одного аргумента. Сережа, Вы победили. Я сдаюсь!